[1] |
LIU J J, WANG Y M, LIU R, et al. When and how does a prominence-like jet gain kinetic energy [J]. Astrophys. J., 2014, 782:94
|
[2] |
LIU J J, WANG Y M, SHEN C L, et al. A solar coronal jet event triggers a coronal mass ejection [J]. Astrophys. J., 2015, 813:115
|
[3] |
ZHANG Q H, LIU R, WANG Y M, et al. A prominence eruption driven by flux feeding from chromospheric fibrils [J]. Astrophys. J., 2014, 789:133
|
[4] |
LIU J J, MCINTOSH S W, MOORTEL I D, WANG Y M. On the parallel and perpendicular propagating motions visible in polar plumes:an incubator for (fast) solar wind acceleration [J]. Astrophys. J., 2015, 806:273
|
[5] |
LIU R, TITOV V, GOU T Y, et al. An unorthodox XClass long-duration confined flare [J]. Astrophys. J., 2014, 790:8
|
[6] |
GOU T Y, LIU R, WANG Y M. Do all candle-flameshaped flares have the same temperature distribution [J]. Sol. Phys., 2015, 290:2211-2230
|
[7] |
LIU K, WANG Y M, ZHANG J, et al. Extremely large EUV late phase of solar flares [J]. Astrophys. J., 2015, 802:35
|
[8] |
LIU R, WANG Y M, SHEN C L. Early evolution of an energetic coronal mass ejection and its relation to EUV waves [J]. Astrophys. J., 2014, 797:37
|
[9] |
Zhang J B, He J S, Yan L M, et al. Plasma draining and replenishing near a solar active region inferred from cross-correlation between radiation intensity and Doppler shift [J]. Sci. China Earth Sci., 2015, 58:830
|
[10] |
YAN L M, PETER H, HE J S, et al. Self-absorption in the solar transition region [J]. Astrophys. J., 2015, 811:48
|
[11] |
YANG L P, ZHANG L, HE J S, et al. Numerical simulation of fast-mode magnetosonic waves excited by plasmoid ejections in the solar corona [J]. Astrophys. J., 2015, 800:111
|
[12] |
YANG L P, WANG L H, HE J S, et al. Numerical simulation of superhalo electrons generated by magnetic reconnection in the solar wind source region [J]. Res. Astron. Astrophys., 2015, 15:348-362
|
[13] |
HE J S, WANG L H, TU C Y, et al. Evidence of Landau and cyclotron resonance between protons and kinetic waves in solar wind turbulence [J]. Astrophys. J., 2015, 800:L31
|
[14] |
HE J S, TU C Y, MARSCH E, et al. Proton heating in solar wind compressible turbulence with collsions between counter-propagating waves [J]. Physics, 2015, 813(2):L30
|
[15] |
ZHANG L, YANG L P, HE J S, et al. Identification of slow magnetosonic wave trains and their evolution in 3D compressible turbulence simulation [J]. Ann. Geophys., 2015, 33:13-23
|
[16] |
WANG X, TU C Y, WANG L H, et al. The upstreampropagating Alfvénic fluctuations with power law spectra in the upstream region of the Earth’s bow shock [J]. Geophys. Res. Lett., 2015, 42:3654-3661
|
[17] |
HE J S, PEI Z T, WANG L H, et al. Sunward propagating Alfvén waves in association with sunward drifting proton beams in the solar wind [J]. Astrophys. J., 2015, 805:176
|
[18] |
YANG L P, ZHANG L, HE J S, et al. The formation of rotational discontinuities in compressive three-dimensional MHD turbulence [J]. Astrophys. J., 2015, 809:155
|
[19] |
ZHANG L, HE J S, TU C Y, et al. Occurrence rates and heating effects of tangential and rotational discontinuities as observed from three-dimensional simulation of magnetohydrodynamic turbulence [J]. Astrophys. J., 2015, 804:L43
|
[20] |
WANG X, TU C Y, HE J S, et al. The spectral features of low-amplitude magnetic fluctuations in the solar wind and their comparison with moderate-amplitude fluctuations[J]. Astrophys. J., 2015, 810:L21
|
[21] |
WANG X, TU C Y, MARSCH E, et al. Scale-dependent normalized amplitude and weak spectral anisotropy of magnetic field fluctuations in the solar wind turbulence [J]. Astrophys. J., 2016, 816:15
|
[22] |
YAN L M, HE J S, ZHANG L, et al. Spectral anisotropy of elsässer variables in two-dimensional wave-vector space as observed in the fast solar wind turbulence [J]. Astrophys. J., 2016, 816:L24
|
[23] |
LIU Y C M, HUANG J, et al. A statistical analysis of heliospheric plasma sheets, heliospheric current sheets, and sector boundaries observed in situ by STEREO[J]. J. Geophys. Res.:Space Phys., 2014, 119:8721-8732
|
[24] |
HUANG J, LIU Y C M, KLECKER B, et al. Coincidence of heliospheric current sheet and stream interface:Implications for the origin and evolution of the solar wind [J]. J. Geophys. Res.:Space Phys., 2016, 121:19-29
|
[25] |
HUANG J, LIU Y C, KLECKER B, et al. Statistical study of the coincidence of heliospheric current sheet and stream interface [J]. J. Geophys. Res.:Space Phys., 2016-JA022842, under review
|
[26] |
ZUO P B, FENG X S, XIE Y Q, et al. Automatic detection algorithm of dynamic pressure pulses in the solar wind [J]. Astrophys. J., 2015, 803:94
|
[27] |
ZUO P B, FENG X S, XIE Y Q, et al. A statistical survey of dynamic pressure pulses in the solar wind based on WIND observations [J]. Astrophys. J., 2015, 808:83
|
[28] |
WANG Y, WEI F S, FENG X S, et al. Energy dissipation procsses in solar wind turbulence [J]. Astrophys. J. Supp., 2015, 221:34
|
[29] |
WANG L H, KRUCKER S, MASON G M, et al. The injection of ten electron/3He-rich SEP events [J]. Astron. Astrophys., 2016, 585:A119
|
[30] |
Wang L H, Yang L, He J S, et al. Solar wind ~20—200 keV superhalo electrons at quiet times [J]. Astrophys. J., 2015, 803:L2
|
[31] |
YANG L, WANG L H, LI G, et al. The angular distribution of solar wind supehalo electrons at quiet times [J]. Astrophys. J., 2015, 811:L8
|
[32] |
TAO J W, WANG L H, ZONG Q G, et al. Quiettime suprathermal (~0.1–1.5 keV) electrons in the solar wind [J]. Astrophys. J., 2016, accepted
|
[33] |
WU Z, CHEN Y, LI G, et al. Observations of energetic particles between a pair of corotating interaction regions[J]. Astrophys. J., 2014, 781:17
|
[34] |
ZHOU D Z, WANG C, ZHANG B Q, et al. Super solar particle event around AD775 was found [J]. Chin. Sci. Bull., 2014, 59(22):2736-2742
|
[35] |
WANG Y, QIN G, ZHANG M, DALLA S. A numerical simulation of solar energetic particle dropouts during impulsive events [J]. Astrophys. J., 2014, 789:157
|
[36] |
QIN G, SHALCHI A. Perpendicular diffusion of energetic particles:numerical test of the theorem on reduced dimensionality [J]. Phys. Plasmas, 2015, 22, 124027
|
[37] |
WANG Y, QIN G. Estimation of the release time of solar energetic particles near the Sun [J]. Astrophys. J., 2015, 799:111
|
[38] |
QIN G, WANG Y. Simulations of a gradual solar energetic particle event observed by HELIOS 1, HELIOS 2, and IMP8 [J]. Astrophys. J., 2015, 809:177
|
[39] |
WANG Y, QIN G. Simulations of the spatial and temporal invariance in the spectra of gradual solar energetic particle events [J]. Astrophys. J., 2015, 806:252
|
[40] |
WANG Y, QIN G. Effect of adiabatic focusing on diffusion of energetic charged particles [J]. Astrophys. J., 2016, 820:61
|
[41] |
CHU W, QIN G. The geomagnetic cutoff rigidities at high latitudes during different solar wind and geomagnetic conditions [J]. Ann. Geophys., 2016, 34:45-53
|
[42] |
YANG Z W, LIU Y D, et al. Full particle electromagnetic simulations of entropy generation across a collisionless shock [J]. Astrophys. J., 2014, 793:L11
|
[43] |
WEI W W, SHEN F, ZUO P B. Research progress on the solar energetic particle model based on magnetohydrodynamic simulation [J]. Prog. Astron., 2015, 33:1
|
[44] |
WEI W W, SHEN F, ZUO P B, et al. Effects of the solar wind background field on the numerical simulation of the Solar Energetic Particle (SEP) transportation [J]. Chin. J. Geophys., 2016, 59(3):767-777
|
[45] |
YANG Z W, LIU Y D, RICHARDSON J D, et al. Impact of pickup ions on the shock front nonstationarity and energy dissipation of the heliospheric termination shock:twodimensional full particle simulations and comparison with Voyager 2 observations [J]. Astrophys. J., 2015, 809:28
|
[46] |
LUO X, ZHANG M, POTGIETER M, et al. A numerical simulation of cosmic-ray modulation near the heliospause[J]. Astrophys. J., 2015, 808:82
|
[47] |
RUAN G P, CHENY, WANG S, et al. A solar eruption driven by rapid sunspot rotation [J]. Astrophys. J., 2014, 784:165
|
[48] |
RUAN G P, CHEN Y, WANG H M. Gradual magnetic evolution of sunspot structure and filament-corona dynamics associated with the X1.8 flare in AR11283 [J]. Astrophys. J., 2015, 812:120
|
[49] |
CHEN Y, DU G H, FENG L, et al. A solar type radio burst from CME-coronal ray interaction:simultaneous radio and EUV imaging [J]. Astrophys. J., 2014, 787:59
|
[50] |
FENG S W, DU G H, CHEN Y, et al. Simultaneous radio and EUV imaging of a multi-lane coronal Type radio burst [J]. Sol. Phys., 2015, 290:1195-1205
|
[51] |
KONG X L, CHEN Y, GUO F, et al. The possible role of coronal streamers as magnetically closed structures in shock-induced energetic electrons and metric Type radio bursts [J]. Astrophys. J., 2015, 798:81
|
[52] |
DU G H, CHEN Y, LV M S, et al. Temporal spectral shift and polarization of a Band-splitting solar Type radio burst [J]. Astrophys. J. Lett., 2014, 793:L39
|
[53] |
DU G H, KONG X L, CHEN Y, et al. An observational revisit of Band-split solar Type radio bursts [J]. Astrophys. J., 2015, 812:52
|
[54] |
VASANTH V, CHEN Y, KONG X L, WANG B. Investigation of the geoeffectiveness of CMEs associated with IP Type radio bursts [J]. Sol. Phys., 2015, 290:1815-1826
|
[55] |
CHENG X, DING M D, ZHANG J,et al. Formation of a double-decker magnetic flux rope in the sigmoidal solar active region 11520 [J]. Astrophys. J., 2014, 789:93
|
[56] |
SONG H Q, ZHANG J, CHEN Y, CHENG X. Direct observations of magnetic flux rope formation during a solar coronal mass ejection [J]. Astrophys. J. Lett., 2014, 792:L40
|
[57] |
SONG H Q, ZHANG J, CHENG X, et al. Temperature evolution of a magnetic flux rope in a failed solar eruption[J]. Astrophys. J., 2014, 784:48
|
[58] |
SONG H Q, CHEN Y, ZHANG J, et al. Evidence of the solar EUV hot channel as a magnetic flux rope from remote-sensing and in situ observations [J]. Astrophys. J. Lett., 2015, 808:L15
|
[59] |
SONG H Q, ZHANG J, CHEN Y, et al. First taste of hot channel in interplanetary space [J]. Astrophys. J., 2015, 803:96
|
[60] |
SONG H Q, CHEN Y, ZHANG J, et al. Acceleration phases of a solar filament during its eruption [J]. Astrophys. J. Lett., 2015, 804:L38
|
[61] |
WANG Y M, WANG B Y, SHEN C L, et al. Deflected propagation of a coronal mass ejection from the corona to interplanetary space [J]. J. Geophys. Res., 2014, 119:5117-5132
|
[62] |
SHEN F, SHEN C L, ZHANG J, et al. Evolution of the 12 July 2012 CME from the Sun to the Earth:data-constrained three-dimensional MHD simulations [J]. J. Geophys. Res., 2014, 119:7128-7141
|
[63] |
SHEN C L, WANG Y M, PAN Z H, et al. Full halo coronal mass ejections:Arrival at the Earth [J]. J. Geophys. Res., 2014, 119:5107-5116
|
[64] |
FENG L, WANG Y M, SHEN F, et al. Why does the apparent mass of a coronal mass ejection increase [J]. Astrophys. J., 2015, 812:70
|
[65] |
DING L G, LI G, JIANG Y, et al. Interaction between two coronal mass ejections in the 2013 May 22 large solar energetic particle event [J]. Astrophys. J. Lett., 2014, 793:L35
|
[66] |
WANG Y M, ZHOU Z J, SHEN C L, et al. Investigating plasma motion of magnetic clouds at 1AU through a velocity-modified cylindrical force-free flux rope model [J]. J. Geophys. Res., 2015, 120:1543-1565
|
[67] |
LIU Y D, LUHMANN J G, KAJDI? P, et al. Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections [J]. Nat. Commun., 2014, 5:3481
|
[68] |
LIU Y D, RICHARDSON J D, WANG C, et al. Propagation of the 2012 March coronal mass ejections from the Sun to heliopause [J]. Astrophys. J., 2014, 788:L28
|
[69] |
LIU Y D, YANG Z W, WANG R, et al. Sun-to-Earth characteristics of two coronal mass ejections interacting near 1AU:formation of a complex ejecta and generation of a two-step geomagnetic storm[J]. Astrophys. J. Lett., 2014, 793:L41
|
[70] |
LIU Y D, HU H D, WANG R, et al. Plasma and magnetic field characteristics of solar coronal mass ejections in relation to geomagnetic strom intensity and variability [J]. Astrophys. J. Lett., 2015, 809:L34
|
[71] |
LIU Y D, HU H D, WANG C, et al. On Sun-to-Earth propagation of coronal mass ejections:Slow events and comparison with others [J]. Astrophys. J., 2016, 222(2):23
|
[72] |
WANG R, LIU Y D, YANG Z W, HU H D. Magnetic field restructuring associated with two successive solar eruptions[J]. Astrophys. J., 2014, 791(2):3777-3790
|
[73] |
WANG R, LIU Y D, DAI X H, et al. The role of active region coronal magnetic field in determining coronal mass ejection propagation direction [J]. Astrophys. J., 2015, 814(1):80
|
[74] |
WANG R, LIU Y D, WIEGELMANN T, et al. Relationship between sunspot rotation and a major solar eruption on 12 July 2012 [J]. Solar Phys., 2016:1-13
|
[75] |
SHEN F, WANG Y M, SHEN C L, FENG X S. Turn on the super-elastic collision nature of coronal mass ejections through low approaching speed [J]. Sci. Rep., 2016, 6:19576
|
[76] |
FENG X S, XIANG C Q, ZHONG D K, et al. SIP-CESE MHD model of solar wind with adaptive mesh refinement of hexahedral meshes [J]. Comput. Phys. Commun., 2014, 185:1965-1980
|
[77] |
FENG X S, ZHANG M, ZHOU Y F. A new threedimensional solar wind model in spherical coordinates with a six-component grid [J]. Astrophys. J. Supp., 2014, 214(1):576-593
|
[78] |
SHEN F, SHEN C L, ZHANG J, et al. Evolution of the 12 July 2012 CME from the Sun to the Earth:data constrained three-dimensional MHD simulations [J]. J. Geophys. Res.:Space Phys., 2014, 119:7128-7141
|
[79] |
ZHANG M, ZHOU Y F. Three-dimensional steady state interplanetary solar wind simulation in spherical coordinates with a six-component grid (in Chinese) [J]. Chin. J. Space Sci., 2014, 34(6):773-784
|
[80] |
WANG J, FENG X S, DU A M, GE Y S. Modeling the interaction between the solar wind and Saturn’s magnetosphere by the AMR-CESE-MHD method [J]. J. Geophys. Res. Space Phys., 2014, 119:9919-9930
|
[81] |
ZHOU Y F, FENG X S, ZHAO X H. Using a 3D MHD simulation to interpret propagation and evolution of a coronal mass ejection observed by multiple spacecraft:the 3 April 2010 event [J]. J. Geophys. Res.:Space Phys., 2014, 119:9321-9333
|
[82] |
FU H Z, FENG X S. Splitting based scheme for threedimensional MHD with dual time stepping [J]. Chin. J. Space Sci., 2015, 35(1):9-17
|
[83] |
ZHANG M, FENG X S. Implicit dual-time stepping method for a solar wind model in spherical coordinates [J]. Comput. Fluids, 2015, 115:115-123
|
[84] |
WANG J, DU A M, ZHANG Y, et al. Modeling the Earth’s magnetosphere under the influence of solar wind with due northward IMF by the AMR-CESE-MHD model[J]. Sci. China:Earth Sci., 2015, 58(7):1235-1242
|
[85] |
FENG X S, MA X P, XIANG C Q. Data-driven modeling of the solar wind from 1Rs to 1AU[J]. J. Geophys. Res.:Space Phys., 2015, 120(12):10159-10174
|
[86] |
JIANG C W, WU S T, FENG X S, HU Q. A comparison study of a solar active-region eruptive filament and a neighboring non-eruptive filament [J]. Res. Astron. Astrophys., 2016, 16(1):18
|
[87] |
JIANG C W, FENG X S. Testing a solar coronal magnetic field extrapolation code with the TitovDémoulin magnetic flux rope model [J]. Res. Astron. Astrophys., 2016, 16(1):15
|
[88] |
WU S T, ZHOU Y F, JIANG C W, et al. A dataconstrained three-dimensional magnetohydrodynamic simulation model for a coronal mass ejection initiation[J]. J. Geophys. Res.:Space Phys., 2016, 121. DOI: 10.1002/2015JA021615
|
[89] |
ZHANG M, FENG X S. A Comparative study of divergence cleaning methods of magnetic field in the solar coronal numerical simulation [J]. Astron. Space Sci., 2016, 3:6
|
[90] |
ZHAO X H, DRYER M. Current status of CME/shock arrival time prediction [J]. Space Weather, 2014, 12:448-469
|
[91] |
ZHAO X H, FENG X S. Influence of a CME’s initial parameters on the arrival of the associated interplanetary shock at Earth and the shock propagational model version 3 [J]. Astrophys. J., 2015, 809:44
|
[92] |
LIU H L, QIN G. Improvements of the shock arrival times at the Earth model STOA[J]. J. Geophys. Res.:Space Phys., 2015, 120:5290-5297
|
[93] |
XU X J, WANG Y, et al. Direct evidence for kinetic effects associated with solar wind reconnection [J]. Sci. Rep., 2015, 5:8080
|
[94] |
ZHAO X H, FENG X S. Periodicities of solar activity and the surface temperature variation of the Earth and their correlations [J]. Chin. Sci. Bull., 2014, 59:1284-1292 (in Chinese)
|
[95] |
ZHAO X H, FENG X S. Correlation between solar activity and the local temperature of Antarctica during the past 11 000 years [J]. JASTP, 2015, 122:26-33
|