留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A Brief Review of Interplanetary Investigations in China from 2014 to 2016

ZHAO Xinhua ZHANG Min WANG Yuming HE Jiansen KONG Xiangliang

ZHAO Xinhua, ZHANG Min, WANG Yuming, HE Jiansen, KONG Xiangliang. A Brief Review of Interplanetary Investigations in China from 2014 to 2016[J]. 空间科学学报, 2016, 36(5): 639-671. doi: 10.11728/cjss2016.05.639
引用本文: ZHAO Xinhua, ZHANG Min, WANG Yuming, HE Jiansen, KONG Xiangliang. A Brief Review of Interplanetary Investigations in China from 2014 to 2016[J]. 空间科学学报, 2016, 36(5): 639-671. doi: 10.11728/cjss2016.05.639
ZHAO Xinhua, ZHANG Min, WANG Yuming, HE Jiansen, KONG Xiangliang. A Brief Review of Interplanetary Investigations in China from 2014 to 2016[J]. Chinese Journal of Space Science, 2016, 36(5): 639-671. doi: 10.11728/cjss2016.05.639
Citation: ZHAO Xinhua, ZHANG Min, WANG Yuming, HE Jiansen, KONG Xiangliang. A Brief Review of Interplanetary Investigations in China from 2014 to 2016[J]. Chinese Journal of Space Science, 2016, 36(5): 639-671. doi: 10.11728/cjss2016.05.639

A Brief Review of Interplanetary Investigations in China from 2014 to 2016

doi: 10.11728/cjss2016.05.639
详细信息
  • 中图分类号: P353

A Brief Review of Interplanetary Investigations in China from 2014 to 2016

  • 摘要: Great progress has been made in the research of solar corona and interplanetary physics by the Chinese scientists during the past two years (2014-2016). Nearly 100 papers were published in this area. In this report, we will give a brief review to these progresses. The investigations include:solar corona, solar wind and turbulence, superhalo electron and energetic particle in the inner heliosphere, solar flares and radio bursts, Coronal Mass Ejections (CMEs) and their interplanetary counterparts, Magnetohydrodynamic (MHD) numerical modeling, CME/shock arrival time prediction, magnetic reconnection, solar variability and its impact on climate. These achievements help us to better understand the evolution of solar activities, solar eruptions, their propagations in the heliosphere, and potential geoeffectiveness. They were achieved by the Chinese solar and space scientists independently or via international collaborations.

     

  • [1] LIU J J, WANG Y M, LIU R, et al. When and how does a prominence-like jet gain kinetic energy [J]. Astrophys. J., 2014, 782:94
    [2] LIU J J, WANG Y M, SHEN C L, et al. A solar coronal jet event triggers a coronal mass ejection [J]. Astrophys. J., 2015, 813:115
    [3] ZHANG Q H, LIU R, WANG Y M, et al. A prominence eruption driven by flux feeding from chromospheric fibrils [J]. Astrophys. J., 2014, 789:133
    [4] LIU J J, MCINTOSH S W, MOORTEL I D, WANG Y M. On the parallel and perpendicular propagating motions visible in polar plumes:an incubator for (fast) solar wind acceleration [J]. Astrophys. J., 2015, 806:273
    [5] LIU R, TITOV V, GOU T Y, et al. An unorthodox XClass long-duration confined flare [J]. Astrophys. J., 2014, 790:8
    [6] GOU T Y, LIU R, WANG Y M. Do all candle-flameshaped flares have the same temperature distribution [J]. Sol. Phys., 2015, 290:2211-2230
    [7] LIU K, WANG Y M, ZHANG J, et al. Extremely large EUV late phase of solar flares [J]. Astrophys. J., 2015, 802:35
    [8] LIU R, WANG Y M, SHEN C L. Early evolution of an energetic coronal mass ejection and its relation to EUV waves [J]. Astrophys. J., 2014, 797:37
    [9] Zhang J B, He J S, Yan L M, et al. Plasma draining and replenishing near a solar active region inferred from cross-correlation between radiation intensity and Doppler shift [J]. Sci. China Earth Sci., 2015, 58:830
    [10] YAN L M, PETER H, HE J S, et al. Self-absorption in the solar transition region [J]. Astrophys. J., 2015, 811:48
    [11] YANG L P, ZHANG L, HE J S, et al. Numerical simulation of fast-mode magnetosonic waves excited by plasmoid ejections in the solar corona [J]. Astrophys. J., 2015, 800:111
    [12] YANG L P, WANG L H, HE J S, et al. Numerical simulation of superhalo electrons generated by magnetic reconnection in the solar wind source region [J]. Res. Astron. Astrophys., 2015, 15:348-362
    [13] HE J S, WANG L H, TU C Y, et al. Evidence of Landau and cyclotron resonance between protons and kinetic waves in solar wind turbulence [J]. Astrophys. J., 2015, 800:L31
    [14] HE J S, TU C Y, MARSCH E, et al. Proton heating in solar wind compressible turbulence with collsions between counter-propagating waves [J]. Physics, 2015, 813(2):L30
    [15] ZHANG L, YANG L P, HE J S, et al. Identification of slow magnetosonic wave trains and their evolution in 3D compressible turbulence simulation [J]. Ann. Geophys., 2015, 33:13-23
    [16] WANG X, TU C Y, WANG L H, et al. The upstreampropagating Alfvénic fluctuations with power law spectra in the upstream region of the Earth’s bow shock [J]. Geophys. Res. Lett., 2015, 42:3654-3661
    [17] HE J S, PEI Z T, WANG L H, et al. Sunward propagating Alfvén waves in association with sunward drifting proton beams in the solar wind [J]. Astrophys. J., 2015, 805:176
    [18] YANG L P, ZHANG L, HE J S, et al. The formation of rotational discontinuities in compressive three-dimensional MHD turbulence [J]. Astrophys. J., 2015, 809:155
    [19] ZHANG L, HE J S, TU C Y, et al. Occurrence rates and heating effects of tangential and rotational discontinuities as observed from three-dimensional simulation of magnetohydrodynamic turbulence [J]. Astrophys. J., 2015, 804:L43
    [20] WANG X, TU C Y, HE J S, et al. The spectral features of low-amplitude magnetic fluctuations in the solar wind and their comparison with moderate-amplitude fluctuations[J]. Astrophys. J., 2015, 810:L21
    [21] WANG X, TU C Y, MARSCH E, et al. Scale-dependent normalized amplitude and weak spectral anisotropy of magnetic field fluctuations in the solar wind turbulence [J]. Astrophys. J., 2016, 816:15
    [22] YAN L M, HE J S, ZHANG L, et al. Spectral anisotropy of elsässer variables in two-dimensional wave-vector space as observed in the fast solar wind turbulence [J]. Astrophys. J., 2016, 816:L24
    [23] LIU Y C M, HUANG J, et al. A statistical analysis of heliospheric plasma sheets, heliospheric current sheets, and sector boundaries observed in situ by STEREO[J]. J. Geophys. Res.:Space Phys., 2014, 119:8721-8732
    [24] HUANG J, LIU Y C M, KLECKER B, et al. Coincidence of heliospheric current sheet and stream interface:Implications for the origin and evolution of the solar wind [J]. J. Geophys. Res.:Space Phys., 2016, 121:19-29
    [25] HUANG J, LIU Y C, KLECKER B, et al. Statistical study of the coincidence of heliospheric current sheet and stream interface [J]. J. Geophys. Res.:Space Phys., 2016-JA022842, under review
    [26] ZUO P B, FENG X S, XIE Y Q, et al. Automatic detection algorithm of dynamic pressure pulses in the solar wind [J]. Astrophys. J., 2015, 803:94
    [27] ZUO P B, FENG X S, XIE Y Q, et al. A statistical survey of dynamic pressure pulses in the solar wind based on WIND observations [J]. Astrophys. J., 2015, 808:83
    [28] WANG Y, WEI F S, FENG X S, et al. Energy dissipation procsses in solar wind turbulence [J]. Astrophys. J. Supp., 2015, 221:34
    [29] WANG L H, KRUCKER S, MASON G M, et al. The injection of ten electron/3He-rich SEP events [J]. Astron. Astrophys., 2016, 585:A119
    [30] Wang L H, Yang L, He J S, et al. Solar wind ~20—200 keV superhalo electrons at quiet times [J]. Astrophys. J., 2015, 803:L2
    [31] YANG L, WANG L H, LI G, et al. The angular distribution of solar wind supehalo electrons at quiet times [J]. Astrophys. J., 2015, 811:L8
    [32] TAO J W, WANG L H, ZONG Q G, et al. Quiettime suprathermal (~0.1–1.5 keV) electrons in the solar wind [J]. Astrophys. J., 2016, accepted
    [33] WU Z, CHEN Y, LI G, et al. Observations of energetic particles between a pair of corotating interaction regions[J]. Astrophys. J., 2014, 781:17
    [34] ZHOU D Z, WANG C, ZHANG B Q, et al. Super solar particle event around AD775 was found [J]. Chin. Sci. Bull., 2014, 59(22):2736-2742
    [35] WANG Y, QIN G, ZHANG M, DALLA S. A numerical simulation of solar energetic particle dropouts during impulsive events [J]. Astrophys. J., 2014, 789:157
    [36] QIN G, SHALCHI A. Perpendicular diffusion of energetic particles:numerical test of the theorem on reduced dimensionality [J]. Phys. Plasmas, 2015, 22, 124027
    [37] WANG Y, QIN G. Estimation of the release time of solar energetic particles near the Sun [J]. Astrophys. J., 2015, 799:111
    [38] QIN G, WANG Y. Simulations of a gradual solar energetic particle event observed by HELIOS 1, HELIOS 2, and IMP8 [J]. Astrophys. J., 2015, 809:177
    [39] WANG Y, QIN G. Simulations of the spatial and temporal invariance in the spectra of gradual solar energetic particle events [J]. Astrophys. J., 2015, 806:252
    [40] WANG Y, QIN G. Effect of adiabatic focusing on diffusion of energetic charged particles [J]. Astrophys. J., 2016, 820:61
    [41] CHU W, QIN G. The geomagnetic cutoff rigidities at high latitudes during different solar wind and geomagnetic conditions [J]. Ann. Geophys., 2016, 34:45-53
    [42] YANG Z W, LIU Y D, et al. Full particle electromagnetic simulations of entropy generation across a collisionless shock [J]. Astrophys. J., 2014, 793:L11
    [43] WEI W W, SHEN F, ZUO P B. Research progress on the solar energetic particle model based on magnetohydrodynamic simulation [J]. Prog. Astron., 2015, 33:1
    [44] WEI W W, SHEN F, ZUO P B, et al. Effects of the solar wind background field on the numerical simulation of the Solar Energetic Particle (SEP) transportation [J]. Chin. J. Geophys., 2016, 59(3):767-777
    [45] YANG Z W, LIU Y D, RICHARDSON J D, et al. Impact of pickup ions on the shock front nonstationarity and energy dissipation of the heliospheric termination shock:twodimensional full particle simulations and comparison with Voyager 2 observations [J]. Astrophys. J., 2015, 809:28
    [46] LUO X, ZHANG M, POTGIETER M, et al. A numerical simulation of cosmic-ray modulation near the heliospause[J]. Astrophys. J., 2015, 808:82
    [47] RUAN G P, CHENY, WANG S, et al. A solar eruption driven by rapid sunspot rotation [J]. Astrophys. J., 2014, 784:165
    [48] RUAN G P, CHEN Y, WANG H M. Gradual magnetic evolution of sunspot structure and filament-corona dynamics associated with the X1.8 flare in AR11283 [J]. Astrophys. J., 2015, 812:120
    [49] CHEN Y, DU G H, FENG L, et al. A solar type radio burst from CME-coronal ray interaction:simultaneous radio and EUV imaging [J]. Astrophys. J., 2014, 787:59
    [50] FENG S W, DU G H, CHEN Y, et al. Simultaneous radio and EUV imaging of a multi-lane coronal Type radio burst [J]. Sol. Phys., 2015, 290:1195-1205
    [51] KONG X L, CHEN Y, GUO F, et al. The possible role of coronal streamers as magnetically closed structures in shock-induced energetic electrons and metric Type radio bursts [J]. Astrophys. J., 2015, 798:81
    [52] DU G H, CHEN Y, LV M S, et al. Temporal spectral shift and polarization of a Band-splitting solar Type radio burst [J]. Astrophys. J. Lett., 2014, 793:L39
    [53] DU G H, KONG X L, CHEN Y, et al. An observational revisit of Band-split solar Type radio bursts [J]. Astrophys. J., 2015, 812:52
    [54] VASANTH V, CHEN Y, KONG X L, WANG B. Investigation of the geoeffectiveness of CMEs associated with IP Type radio bursts [J]. Sol. Phys., 2015, 290:1815-1826
    [55] CHENG X, DING M D, ZHANG J,et al. Formation of a double-decker magnetic flux rope in the sigmoidal solar active region 11520 [J]. Astrophys. J., 2014, 789:93
    [56] SONG H Q, ZHANG J, CHEN Y, CHENG X. Direct observations of magnetic flux rope formation during a solar coronal mass ejection [J]. Astrophys. J. Lett., 2014, 792:L40
    [57] SONG H Q, ZHANG J, CHENG X, et al. Temperature evolution of a magnetic flux rope in a failed solar eruption[J]. Astrophys. J., 2014, 784:48
    [58] SONG H Q, CHEN Y, ZHANG J, et al. Evidence of the solar EUV hot channel as a magnetic flux rope from remote-sensing and in situ observations [J]. Astrophys. J. Lett., 2015, 808:L15
    [59] SONG H Q, ZHANG J, CHEN Y, et al. First taste of hot channel in interplanetary space [J]. Astrophys. J., 2015, 803:96
    [60] SONG H Q, CHEN Y, ZHANG J, et al. Acceleration phases of a solar filament during its eruption [J]. Astrophys. J. Lett., 2015, 804:L38
    [61] WANG Y M, WANG B Y, SHEN C L, et al. Deflected propagation of a coronal mass ejection from the corona to interplanetary space [J]. J. Geophys. Res., 2014, 119:5117-5132
    [62] SHEN F, SHEN C L, ZHANG J, et al. Evolution of the 12 July 2012 CME from the Sun to the Earth:data-constrained three-dimensional MHD simulations [J]. J. Geophys. Res., 2014, 119:7128-7141
    [63] SHEN C L, WANG Y M, PAN Z H, et al. Full halo coronal mass ejections:Arrival at the Earth [J]. J. Geophys. Res., 2014, 119:5107-5116
    [64] FENG L, WANG Y M, SHEN F, et al. Why does the apparent mass of a coronal mass ejection increase [J]. Astrophys. J., 2015, 812:70
    [65] DING L G, LI G, JIANG Y, et al. Interaction between two coronal mass ejections in the 2013 May 22 large solar energetic particle event [J]. Astrophys. J. Lett., 2014, 793:L35
    [66] WANG Y M, ZHOU Z J, SHEN C L, et al. Investigating plasma motion of magnetic clouds at 1AU through a velocity-modified cylindrical force-free flux rope model [J]. J. Geophys. Res., 2015, 120:1543-1565
    [67] LIU Y D, LUHMANN J G, KAJDI? P, et al. Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections [J]. Nat. Commun., 2014, 5:3481
    [68] LIU Y D, RICHARDSON J D, WANG C, et al. Propagation of the 2012 March coronal mass ejections from the Sun to heliopause [J]. Astrophys. J., 2014, 788:L28
    [69] LIU Y D, YANG Z W, WANG R, et al. Sun-to-Earth characteristics of two coronal mass ejections interacting near 1AU:formation of a complex ejecta and generation of a two-step geomagnetic storm[J]. Astrophys. J. Lett., 2014, 793:L41
    [70] LIU Y D, HU H D, WANG R, et al. Plasma and magnetic field characteristics of solar coronal mass ejections in relation to geomagnetic strom intensity and variability [J]. Astrophys. J. Lett., 2015, 809:L34
    [71] LIU Y D, HU H D, WANG C, et al. On Sun-to-Earth propagation of coronal mass ejections:Slow events and comparison with others [J]. Astrophys. J., 2016, 222(2):23
    [72] WANG R, LIU Y D, YANG Z W, HU H D. Magnetic field restructuring associated with two successive solar eruptions[J]. Astrophys. J., 2014, 791(2):3777-3790
    [73] WANG R, LIU Y D, DAI X H, et al. The role of active region coronal magnetic field in determining coronal mass ejection propagation direction [J]. Astrophys. J., 2015, 814(1):80
    [74] WANG R, LIU Y D, WIEGELMANN T, et al. Relationship between sunspot rotation and a major solar eruption on 12 July 2012 [J]. Solar Phys., 2016:1-13
    [75] SHEN F, WANG Y M, SHEN C L, FENG X S. Turn on the super-elastic collision nature of coronal mass ejections through low approaching speed [J]. Sci. Rep., 2016, 6:19576
    [76] FENG X S, XIANG C Q, ZHONG D K, et al. SIP-CESE MHD model of solar wind with adaptive mesh refinement of hexahedral meshes [J]. Comput. Phys. Commun., 2014, 185:1965-1980
    [77] FENG X S, ZHANG M, ZHOU Y F. A new threedimensional solar wind model in spherical coordinates with a six-component grid [J]. Astrophys. J. Supp., 2014, 214(1):576-593
    [78] SHEN F, SHEN C L, ZHANG J, et al. Evolution of the 12 July 2012 CME from the Sun to the Earth:data constrained three-dimensional MHD simulations [J]. J. Geophys. Res.:Space Phys., 2014, 119:7128-7141
    [79] ZHANG M, ZHOU Y F. Three-dimensional steady state interplanetary solar wind simulation in spherical coordinates with a six-component grid (in Chinese) [J]. Chin. J. Space Sci., 2014, 34(6):773-784
    [80] WANG J, FENG X S, DU A M, GE Y S. Modeling the interaction between the solar wind and Saturn’s magnetosphere by the AMR-CESE-MHD method [J]. J. Geophys. Res. Space Phys., 2014, 119:9919-9930
    [81] ZHOU Y F, FENG X S, ZHAO X H. Using a 3D MHD simulation to interpret propagation and evolution of a coronal mass ejection observed by multiple spacecraft:the 3 April 2010 event [J]. J. Geophys. Res.:Space Phys., 2014, 119:9321-9333
    [82] FU H Z, FENG X S. Splitting based scheme for threedimensional MHD with dual time stepping [J]. Chin. J. Space Sci., 2015, 35(1):9-17
    [83] ZHANG M, FENG X S. Implicit dual-time stepping method for a solar wind model in spherical coordinates [J]. Comput. Fluids, 2015, 115:115-123
    [84] WANG J, DU A M, ZHANG Y, et al. Modeling the Earth’s magnetosphere under the influence of solar wind with due northward IMF by the AMR-CESE-MHD model[J]. Sci. China:Earth Sci., 2015, 58(7):1235-1242
    [85] FENG X S, MA X P, XIANG C Q. Data-driven modeling of the solar wind from 1Rs to 1AU[J]. J. Geophys. Res.:Space Phys., 2015, 120(12):10159-10174
    [86] JIANG C W, WU S T, FENG X S, HU Q. A comparison study of a solar active-region eruptive filament and a neighboring non-eruptive filament [J]. Res. Astron. Astrophys., 2016, 16(1):18
    [87] JIANG C W, FENG X S. Testing a solar coronal magnetic field extrapolation code with the TitovDémoulin magnetic flux rope model [J]. Res. Astron. Astrophys., 2016, 16(1):15
    [88] WU S T, ZHOU Y F, JIANG C W, et al. A dataconstrained three-dimensional magnetohydrodynamic simulation model for a coronal mass ejection initiation[J]. J. Geophys. Res.:Space Phys., 2016, 121. DOI: 10.1002/2015JA021615
    [89] ZHANG M, FENG X S. A Comparative study of divergence cleaning methods of magnetic field in the solar coronal numerical simulation [J]. Astron. Space Sci., 2016, 3:6
    [90] ZHAO X H, DRYER M. Current status of CME/shock arrival time prediction [J]. Space Weather, 2014, 12:448-469
    [91] ZHAO X H, FENG X S. Influence of a CME’s initial parameters on the arrival of the associated interplanetary shock at Earth and the shock propagational model version 3 [J]. Astrophys. J., 2015, 809:44
    [92] LIU H L, QIN G. Improvements of the shock arrival times at the Earth model STOA[J]. J. Geophys. Res.:Space Phys., 2015, 120:5290-5297
    [93] XU X J, WANG Y, et al. Direct evidence for kinetic effects associated with solar wind reconnection [J]. Sci. Rep., 2015, 5:8080
    [94] ZHAO X H, FENG X S. Periodicities of solar activity and the surface temperature variation of the Earth and their correlations [J]. Chin. Sci. Bull., 2014, 59:1284-1292 (in Chinese)
    [95] ZHAO X H, FENG X S. Correlation between solar activity and the local temperature of Antarctica during the past 11 000 years [J]. JASTP, 2015, 122:26-33
  • 加载中
计量
  • 文章访问数:  973
  • HTML全文浏览量:  41
  • PDF下载量:  2124
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-31
  • 刊出日期:  2016-09-15

目录

    /

    返回文章
    返回