[1] |
HU L, WANG H P, XIE W J, WEI B. Electrostatic levitation under the single-axis feedback control condition [J]. Sci. China:Phys. Mech. Astron., 2010, 53:1438-1444
|
[2] |
HU L, WANG H P, LI L H,WEI B. Geometric optimization of electrostatic fields for stable levitation of metallic materials [J]. Sci. China:Technol. Sci., 2013, 56:53-59
|
[3] |
HU L,WANG H P, LI L H,WEI B. Electrostatic levitation of plant seeds and flower buds [J]. Chin. Phys. Lett., 2012, 29:064101
|
[4] |
LI L H, HU L, YANG S J, WANG W L, WEI B. Thermodynamic properties and solidification kinetics of intermetallic Ni7Zr2 alloy investigated by electrostatic levitation technique and theoretical calculations [J]. J. Appl. Phys., 2016, 119:035902
|
[5] |
HU L, LI L H, YANG S J, WEI B. Thermophysical properties and eutectic growth of electrostatically levitated and substantially undercooled liquid Zr91.2Si8.8 alloy [J]. Chem. Phys. Lett., 2015, 621:91-95
|
[6] |
HONG Z Y, XIE W J, WEI B. Acoustic levitation with self-adaptive flexible reflectors [J]. Rev. Sci. Instr., 2011, 82:074904
|
[7] |
HONG Z Y, XIE W J, WEI B. Vibration characteristics of acoustically levitated object with rigid and elastic reflectors[J]. Chin. Phys. Lett., 2010, 27:014301
|
[8] |
GENG D L, XIE W J, YAN N, WEI B. Surface waves on floating liquids induced by ultrasound field [J]. Appl. Phys. Lett., 2013, 102:041604
|
[9] |
GENG D L, XIE W J, YAN N, WEI B. Vertical vibration and shape oscillation of acoustically levitated water drops [J]. Appl. Phys. Lett., 2014, 105:104101
|
[10] |
SHEN C L, XIE W J, WEI B. Parametrically excited sectorial oscillation of liquid drops floating in ultrasound [J]. Phys. Rev., 2010, 81:046305
|
[11] |
SHEN C L, XIE W J, YAN Z L, WEI B. Internal flow of acoustically levitated drops undergoing sectorial oscillations[J]. Phys. Lett.:A, 2010, 374:4045-4048
|
[12] |
YAN Z L, XIE W J, WEI B. Vortex flow in acoustically levitated drops [J]. Phys. Lett.:A, 2011, 375:3306-3309
|
[13] |
ZHOU K,WANG H P, WEI B. Determining thermophysical properties of undercooled liquid Ti-Al alloy by electromagnetic levitation [J]. Chem. Phys. Lett., 2012, 521:52-54
|
[14] |
ZHOU K, WANG H P, CHANG J, WEI B. Specific heat measurement of stable and metastable liquid Ti-Al alloys[J]. Appl. Phys.:A , 2011, 103:135-137
|
[15] |
ZHOU K, WANG H P, WEI B. Thermophysical properties of substantially undercooled liquid Ti-Al-Nb ternary alloy measured by electromagnetic levitation [J]. Philos. Magaz. Lett., 2013, 93:138-141
|
[16] |
ZHOU K, WANG H P, CHANG J, WEI B. Surface tension measurement of metastable liquid Ti-Al-Nb alloys [J]. Appl. Phys.:A , 2011, 105:211-214
|
[17] |
CHANG J,WANG H P, ZHOU K,WEI B. Surface tension measurement of undercooled liquid Ni-based multicomponent alloys [J]. Philos. Magaz. Lett., 2012, 92:428-435
|
[18] |
CHANG J, WANG H P, ZHOU K, WEI B. Thermophysical properties and rapid solidification of an undercooled liquid hexabasic Ni-based alloy [J]. Philos. Magaz. Lett., 2013, 93:254-263
|
[19] |
WANG H P, YANG S J, WEI B. Molecular dynamics prediction of density for metastable liquid noble metals [J]. Chem. Phys. Lett., 2012, 539:30-34
|
[20] |
WANG H P, WEI B. Positive excess volume of liquid Fe-Cu alloys resulting from liquid structure change [J]. Phys. Lett.:A, 2010, 374:4787-4792
|
[21] |
WANG H P, CHANG J, WEI B. Density and related thermophysical properties of metastable liquid Ni-Cu-Fe ternary alloys [J]. Phys. Lett.:A, 2010, 374:2489-2493
|
[22] |
LI L H, WANG WL, HU L, WEI B. First-principle calculations of structural, elastic and thermodynamic properties of Fe-B compounds [J]. Intermetallics, 2014, 46:211-221
|
[23] |
ZHAI W, ZHOU K, HU L, WEI B. Determination of the enthalpy of fusion and thermal diffusivity for ternary Cu60-xSnxSb40 alloys [J]. J. Chem. Thermodyn., 2016, 95:159-163
|
[24] |
LUO S B, WANG W L, CHANG J, XIA Z C, WEI B.A comparative study of dendritic growth within undercooled liquid pure Fe and Fe50Cu50 alloy [J]. Acta Mater., 2014, 69:355-364
|
[25] |
XIA Z C, WANG W L, LUO S B, WEI B. Liquid phase separation and rapid dendritic growth of highly undercooled ternary Fe62.5Cu27.5Sn10 alloy [J]. J. Appl. Phys., 2015, 117:054901
|
[26] |
CHANG J, WANG H P, ZHOU K, WEI B. Rapid dendritic growth and solute trapping within undercooled ternary Ni-5%Cu-5%Mo alloy [J]. Appl. Phys. A , 2012, 109:139-143
|
[27] |
CHANG J, WANG H P, WEI B. Rapid Solidification characteristics of highly undercooled liquid Ni-Cu-Mo-Ge quaternary alloy under electromagnetic levitation condition[J]. Proc. AASRI Int. Confer. Industr. Electron. Appl., 2015, 2:22-25
|
[28] |
WANG W L, QIN H Y, XIA Z C, WEI B. Primary dendrite growth of Ni3Sn intermetallic compound during rapid solidification of undercooled Ni-Sn-Ge alloy [J]. Chin. Sci. Bull., 2012, 57:1073-1077
|
[29] |
GENG D L, XIE W J, WEI B. Containerless solidification of acoustically levitated Ni-Sn eutectic alloy [J]. Appl. Phys. A, 2012, 109:239-244
|
[30] |
YAN N, GENG D L, HONG Z Y, WEI B. Ultrasonic levitation processing and rapid eutectic solidification of liquid Al-Ge alloys [J]. J. Alloys Compounds, 2014, 607:258-263
|
[31] |
YAN N, GENG D L, HONG Z Y,WEI B. Rapid solidification of acoustically levitated Al-Cu-Si eutectic alloy under laser irradiation [J]. Chin. Sci. Bull., 2011, 56:912-918
|
[32] |
ZHAI W, WEI B B. Direct nucleation and growth of peritectic phase induced by substantial undercooling condition[J]. Mater. Lett., 2013, 108:145-148
|
[33] |
LUO S B, WANG W L, XIA Z C, WU Y H, WEI B. Solute redistribution during phase separation of ternary Fe-Cu-Si alloy [J]. Appl. Phys.:A, 2015, 119:1003-1011
|
[34] |
ZANG D Y, WANG H P, DAI F P, LANGEVIN D, WEI B. Solidification mechanism transition of liquid Co-Cu-Ni ternary alloy [J]. Appl. Phys.:A, 2011, 102:141-145
|
[35] |
WANG W L, LI Z Q, WEI B. Macrosegregation pattern and microstructure feature of ternary Fe-Sn-Si immiscible alloy solidified under free fall condition [J]. Acta Mater., 2011, 59:5482-5493
|
[36] |
WU Y H, WANG W L, XIA Z C, WEI B. Phase separation and microstructure evolution of ternary Fe-Sn-Ge immiscible alloy under microgravity condition [J]. Comput. Mater. Sci., 2015, 103:179-188
|
[37] |
YAN N,WANG W L, LUO S B, HU L, WEI B. Correlated process of phase separation and microstructure evolution of ternary Co-Cu-Pb alloy [J]. Appl. Phys.:A, 2013, 113:763-770
|
[38] |
YAN N, HONG Z Y, GENG D L, WANG W L, WEI B. Phase separation and structure evolution of ternary Al-Cu-Sn immiscible alloy under ultrasonic levitation condition[J]. J. Alloys Compounds, 2012, 544:6-12
|
[39] |
ZHAI W, HONG Z Y, XIE W J, WEI B. Dynamic solidification of Sn-38.1% Pb eutectic alloy within ultrasonic field [J]. Chin. Sci. Bull., 2011, 56:89-95
|
[40] |
ZHAI W, LU X Y, WEI B. Microstructural evolution of ternary Ag33Cu42Ge25 eutectic alloy inside ultrasonic field [J]. Progr. Nat. Sci., 2014, 24:642-648
|
[41] |
ZHAIW,WEI B B. Peritectic solidification characteristics of Sb-Sn alloy under ultrasonic vibration [J]. Mater. Lett., 2015, 138:1-4
|
[42] |
ZHAIW, HONG Z Y,WEN X L, GENG D L,WEI B. Microstructural characteristics and mechanical properties of peritectic Cu-Sn alloy solidified within ultrasonic field [J]. Mater. Design, 2015, 72:43-50
|
[43] |
ZHAI W, LIU H M, WEI B. Liquid phase separation and monotectic structure evolution of ternary Al62.6Sn28.5Cu8.9 immiscible alloy within ultrasonic field [J]. Mater. Lett., 2015, 141:221-224
|
[44] |
WANG Lin, DONG Jianxin, YANG Chunjun, XIE Xishan. Mechanisms for Macro Segregation Freckles and Their Criteria [J]. Foundry Technol., 2007, 28(5):585-89 (王玲,董建新,杨春军,谢锡善.宏观偏析黑斑形成机理及其判据[J].铸造技术,2007, 28(5):585-589)
|
[45] |
AL-JARBA K A, FUCHS G E. Effect of carbon additions on the as-cast microstructure and defect formation of a single crystal Ni-based superalloy [J]. Mat. Sci. Eng. A, 2004, 373(1/2):255-267
|
[46] |
BECKERMANN C, GU J P, BOETTINGER W J. Development of a freckle predictor via Rayleigh number method for single-crystal nickel-base superalloy castings [J]. Metall. Mater. Trans. A, 2000, 31(10):2545-2557
|
[47] |
SUN Dongke, ZHU Mingfang, YANG Chaorong, PAN Shiyan, DAI Ting. Modelling of dendritic growth in forced and natural convections [J]. Acta Phys. Sin., 2009, 58:285-291 (孙东科,朱鸣芳,杨朝蓉,潘诗琰,戴挺.强制对流和自然对流作用下枝晶生长的数值模拟[J].物理学报,2009, 58:285-291)
|
[48] |
ZHOU B H, JUNG H, MANGELINCK-NOEL N, et al. Comparative study of the influence of natural convection on directional solidification of Al-3.5wt% Ni and Al-7wt% Si alloys [J]. Adv. Space Res., 2008, 41(12):2112-2117
|
[49] |
BANASZEK J, MCFADDEN S, BROWNE D J, STURZ L, ZIMMERMANN G. Natural convection and columnarto-equiaxed transition prediction in a front-tracking model of alloy solidification [J].Metall. Mater. Trans.:A, 2007, 38(7):1476-1484
|
[50] |
TRIVEDI R, MIYAHARA H, MAZUMDER P, SIMSEK E, TEWARI S N. Directional solidification microstructures in diffusive and convective regimes [J]. J. Cryst. Growth, 2001, 222(1/2):365-379
|
[51] |
JIANG Mingwei, DU Weidong, SONG Changjiang, GAO Yulai, ZHAI Qijie. Effects of specimen dimensions on directional solidification microstructure and interface sta-bility of Al-4.5%Cu alloy [J]. Foundry, 2007, 56(12):1307-1309 (蒋明伟,杜卫东,宋长江,高玉来,翟启杰.试样尺寸对Al-4.5%Cu 合金定向凝固组织和界面稳定性的影响[J].铸造, 2007, 56(12):1307-1309)
|
[52] |
ZHU C S, WANG Z P, GUI J, XIAO R Z. Convection effect on dendritic growth using phase-field method [J]. China Foundry, 2010, 7(1):52-56
|
[53] |
TAN L J, ZABARAS N. Modeling the growth and interaction of multiple dendrites in solidification using a level set method [J]. J. Comput. Phys., 2007, 226(1):131-155
|
[54] |
YUAN L, LEE P D. Dendritic solidification under natural and forced convection in binary alloys:2D versus 3D simulation[J]. Model. Simul. Mater. Sc., 2010, 18(5):1277-1284
|
[55] |
STEINBACH I. Pattern formation in constrained dendritic growth with solutal buoyancy [J]. Acta Mater., 2009, 57(9):2640-2645
|
[56] |
ASTA M, BECKERMANN C, KARMA A, et al. Solidification microstructures and solid-state parallels:Recent developments, future directions [J]. Acta Mater., 2009, 57(4):941-971
|
[57] |
MA D X, BUHRIG-POLACZEK A. Avoiding grain defects in single crystal components by application of a heat conductor technique [J]. Int. J. Mater. Res., 2009, 100(8):1145-1151
|
[58] |
YANG X L, NESS D, LEE P D, D’SOUZA N. Simulation of stray grain formation during single crystal seed meltback and initial withdrawal in the Ni-base superalloy CMSX4[J]. Mat. Sci. Eng.:A, 2005, 413:571-577
|
[59] |
GAO Sifeng, LIU Lin, HU Xiaowu, GE Bingming, ZHANG Jun, FU Hengzhi. Review of freckle defects under directional solidification of nickel-based superalloys [J]. J. Mat. Sci. Eng., 2010, 28(1):145-151 (高斯峰,刘林,胡小武,葛丙明,张军,傅恒志.镍基高温合金定向凝固过程中雀斑缺陷研究进展[J].材料科学与工程学报,2010, 28(1):145-151)
|
[60] |
STRELOV V I, KURANOVA I P, ZAKHAROV B G, VOLOSHIN A E. Crystallization in space:results and prospects [J]. Crystallogravity, 2014, 59:781
|
[61] |
CHEN N F, ZHONG X R, LIN L Y, et al. Comparison of field effect transistor characteristics between spacegrown and earth-grown gallium arsenide single crystal substrates [J]. Appl. Phys. Lett., 2001, 78:478
|
[62] |
DUFFAR T, DUSSERRE P, PICCA F, LACROIX S, GIACOMETTI N. Bridgman growth without crucible contact using the dewetting Phenomenon [J]. J. Cryst. Growth, 2000, 211:434
|
[63] |
HERLACH D M, COCHRANE R F, EGRY I, FECHT H J, GREER A L. Containerless processing in the study of metallic melts and their solidification [J]. Int. Mater. Rev., 1993, 38:273
|
[64] |
HU W R, ZHAO J F, LONG M, et al. Space program SJ-10 of microgravity research [J]. Microgravity Sci. Tech., 2014, 26:159
|