留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太阳风对流效应对CME渡越时间的影响

孙路远

孙路远. 太阳风对流效应对CME渡越时间的影响[J]. 空间科学学报, 2016, 36(6): 828-836. doi: 10.11728/cjss2016.06.828
引用本文: 孙路远. 太阳风对流效应对CME渡越时间的影响[J]. 空间科学学报, 2016, 36(6): 828-836. doi: 10.11728/cjss2016.06.828
SUN Luyuan. Influence of Convection Effects of Solar Wind Speed on CME Transit Time[J]. Journal of Space Science, 2016, 36(6): 828-836. doi: 10.11728/cjss2016.06.828
Citation: SUN Luyuan. Influence of Convection Effects of Solar Wind Speed on CME Transit Time[J]. Journal of Space Science, 2016, 36(6): 828-836. doi: 10.11728/cjss2016.06.828

太阳风对流效应对CME渡越时间的影响

doi: 10.11728/cjss2016.06.828
基金项目: 

国家自然科学基金项目资助(40874078)

详细信息
    通讯作者:

    孙路远,E-mail:sunluyuan07@mails.ucas.ac.cn

  • 中图分类号: P353

Influence of Convection Effects of Solar Wind Speed on CME Transit Time

  • 摘要: 基于Gopalswamy预报日冕物质抛射(CME)渡越时间的经验模型,选取1996-2007年间52个与地磁效应Dst<-50nT相关的CME事件以及10个引起特大磁暴(Dst<-200nT)的CME事件,结合ACE卫星在1AU处的太阳风观测资料,分析背景太阳风对流效应对CME到达1AU处渡越时间预报的影响.对于52个CME事件,考虑太阳风对流效应的影响后,预报的标准偏差由16.5h降为11.4h,修正后的误差分布趋向于高斯分布,并且68%事件的预报误差小于15h.对于10个引起特大磁暴的CME事件,考虑太阳风对流效应的影响后,预报的标准偏差由10.6h降低到6.5h,其中6个事件的预报误差小于5h.研究结果表明,对于CME事件,考虑背景太阳风对流效应的影响可以降低预报CME渡越时间的标准偏差,说明太阳风对流效应对预报CME事件渡越时间具有重要作用.

     

  • [1] LIU Zhenxing. Space Physics[M]. Harbin: Harbin Industry Press, 2005:342-352(刘振兴. 太空物理学[M]. 哈尔滨: 哈尔滨工业大学出版社, 2005:342-352)
    [2] SRIVASTAVA N, VENKATAKRISHNAN P. Relationship between CME speed and geomagnetic stormintensity[J]. J. Geophys. Res., 2002, 29(9):1-1-1-4
    [3] SRIVASTAVA N, VENKATAKRISHNAN P. Solar and interplanetary sources of major geomagnetic storms during 1996-2002[J]. J. Geophys. Res., 2004, 109: A10103.DOI: 10.1029/2003JA010175
    [4] GOPALSWAMY N, LARA A, LEPPING R P. Interplanetary acceleration of coronal mass Ejections[J]. Geophys. Res. Lett., 2000, 27(2):145-148
    [5] GOPALSWAMY N, LARA A, YASHIRO S, et al. Predicting the 1AU arrival times of coronal mass ejections[J]. J. Geophys. Res., 2001, 106(A12):29207-29217
    [6] GOPALSWAMY N, LARA A, MANOHARAN P K, et al. An empirical model to predict the 1AU arrival of interplanetary shocks[J]. Adv. Space Res., 2005, 36:2289-2294
    [7] WANG Y M, YE P Z, WANG S, et al. A statistical study on the geoeffectiveness of Earth-directed coronal mass ejections from March 1997 to December 2000[J]. J. Geophys. Res., 2002, 107(A11):SSH 2-1SSH 2-9
    [8] WANG Y M, YE P Z, WANG S, et al. An interplanetary cause of large geomagnetic storms: fast forward shock over taking preceding magnetic cloud[J]. J. Geophys. Res., 2003, 30(13):33
    [9] WANG Y M, XUE X H, SHEN C L, et al. Impact of major coronal mass ejections on geo-space during 2005 September 7-13[J]. Astrophys. J., 2006, 646:625-633
    [10] MANOHARAN P K, GOPALSWAMY N, YASHIRO S, et al. Influence of coronal mass ejection interaction on propagation of interplanetary shocks[J]. J. Geophys. Res., 2004, 109:A06109. DOI: 10.1029/2003JA010300
    [11] SCHWENN R, DAL LAGO A, HUTTUNEN E, GONZALEZ W D. The association of coronal mass ejections with their effects near the Earth[J]. Ann. Geophys., 2005, 23(3):1033-1059
    [12] VRSNAK B, GOPALSWAMY N. Influence of aerodynamic drag on the motion of interplanetary ejecta[J]. J. Geophys. Res., 2002, 107(A2):SSH 2-1-SSH 2-6
    [13] ZHANG J, DERE K P, HOWARD R A, et al. Identification of solar sources of major geomagnetic storms between 1996 and 2000[J]. Astrophys. J., 2003, 582:520-533
    [14] ZHAO XINHUA. Statistical Analysis on the Solar-terrestrial Transients and Comprehensive Research on the Related Prediction Methods[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2007
    [15] WEI F S, DRYER M. Propagation of solar flare-associated interplanetary shock waves in the heliospheric meridional plane[J]. Solar Phys., 1991, 132:373-394
    [16] WEI F S, FENG X S, XU Y, et al. Prediction tests by using ISF method for the geomagnetic disturbances[J]. Adv. Space Res., 2005, 36(12):2363-2367
    [17] OWENS M, CARGILL P. Predictions of the arrival time of coronal mass ejections at 1AU: an analysis of the causes of errors[J]. Ann. Geophys., 2004, 22:661-671
    [18] XIE Y Q, WEI F S, FENG X S, et al. Prediction test for the two extremely strong solar storms in October 2003[J]. Solar Phys., 2006, 234(2):363-377
    [19] ZHAN G Y, DU A M, FENG X S, et al. Simulated (STEREO) views of the solar wind disturbances following the coronal mass ejections of 1 August 2010[J]. Solar Phys., 2014, 289(1):319-338
    [20] ZHAN G Y, DU A M, DU D, SUN W. Evaluation of a revised interplanetary shock prediction model: 1D CESE-HD-2 solar-wind model[J]. Solar Phys., 2014, 289(8):3159-3173
    [21] LUO Hao, CHEN Gengxiong, DU Aimin, et al. Influence of the initial shock speed excited by solar flares on shock arrival time prediction[J]. Chin. J. Geophys., 2011, 54(8):1945-1952(罗浩, 陈耿雄, 杜爱民, 等. 耀斑引发的激波初始速度对激波到达时间预测的影响[J]. 地球物理学报, 2011, 54(8):1945-1952)
  • 加载中
计量
  • 文章访问数:  975
  • HTML全文浏览量:  9
  • PDF下载量:  892
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-08
  • 修回日期:  2016-02-15
  • 刊出日期:  2016-11-15

目录

    /

    返回文章
    返回