留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Lax-Friderichs格式在磁流体模拟中的改进和应用

刘强 李会超

刘强, 李会超. Lax-Friderichs格式在磁流体模拟中的改进和应用[J]. 空间科学学报, 2016, 36(6): 857-865. doi: 10.11728/cjss2016.06.857
引用本文: 刘强, 李会超. Lax-Friderichs格式在磁流体模拟中的改进和应用[J]. 空间科学学报, 2016, 36(6): 857-865. doi: 10.11728/cjss2016.06.857
LIU Qiang, LI Huichao. Improvement and Application of Lax-Friderichs Scheme in MHD Numerical Simulation[J]. Journal of Space Science, 2016, 36(6): 857-865. doi: 10.11728/cjss2016.06.857
Citation: LIU Qiang, LI Huichao. Improvement and Application of Lax-Friderichs Scheme in MHD Numerical Simulation[J]. Journal of Space Science, 2016, 36(6): 857-865. doi: 10.11728/cjss2016.06.857

Lax-Friderichs格式在磁流体模拟中的改进和应用

doi: 10.11728/cjss2016.06.857
基金项目: 

国家自然科学基金项目(41274180,41231068)和河南省高校科技创新团队项目(13IRTSTHN020)共同资助

详细信息
    通讯作者:

    刘强,E-mail:liuq523@163.com

  • 中图分类号: P353

Improvement and Application of Lax-Friderichs Scheme in MHD Numerical Simulation

  • 摘要: 磁流体数值模拟是空间物理研究的重要手段.采用具有TVD(Total Variation Diminishing)特性的Lax-Friderichs差分格式求解了GLM-MHD(Generalized Lagrange Multiplier-Magnetohydrodynamics)方程.为降低格式的数值耗散,引入耗散修正系数对算法的通量计算过程进行改进.二维Rotor算例和磁云-电流片相互作用算例的模拟结果表明,GLM-MHD方法可以有效控制磁场散度误差,相对于泊松校正法可以节省一半以上的计算时间.在不破坏格式稳定性基础上,耗散修正系数有效降低了算法的数值耗散.

     

  • [1] BÜCHNER J, DUM C T, SCHOLER M. Space Plasma Simulation[M]. Berlin: Springer, 2003
    [2] ROE P L, BALSARA D S. Notes on the eigensystem of magnetohydrodynamics[J]. Siam J. Appl. Math., 1996, 56(1):57-67
    [3] HAN S M, WU S T, DRYER M. A three-dimensional, time-dependent numerical modeling of super-sonic, super-Alfvénic MHD flow[J]. Comp. Fluids, 1988, 16(1):81
    [4] ANGELOPOULOS C D. High resolution schemes for hyperbolic conservation laws[J]. J. Comput. Phys., 1983, 49:357-393
    [5] WAAGAN K. A positive MUSCL-Hancock scheme for ideal magnetohydrodynamics[J]. J. Comput. Phys., 2009, 228(23):8609-8626
    [6] GARDINER T A, STONE J M. An unsplit Godunov method for ideal MHD via constrained transport in three dimensions[J]. J. Comput. Phys., 2005, 205(2):509-539
    [7] FENG Xueshang, ZHOU Yufen, HU Yanqi. A 3rd order WENO GLM-MHD scheme for magnetic reconnection[J]. Chin. J. Space Sci., 2006, 26(1):1-7
    [8] GREENOUGH J A, RIDER W J. A quantitative comparison of numerical methods for the compressible Euler equations: fifth-order WENO and piecewise-linear Godunov[J]. J. Comput. Phys., 2004, 196:259-281
    [9] TANAKA T. Finite volume TVD scheme on an unstructured grid system for three-dimensional MHD simulation of inhomogeneous systems including strong background potential fields[J]. J. Comput. Phys., 1994, 111(2):381-389
    [10] FENG Xueshang, WU Shitsan, FAN Quanlin, et al. Scheme for MHD equations and its application to MHD numerical simulation[J]. Chin. J. Space Sci., 2002, 22(4): 300-308(冯学尚, WU S T, 范全林, 等. 一类TVD型组合差分方法及其在磁流体数值计算中的应用[J]. 空间科学学报, 2002, 22(4):300-308)
    [11] WEI Fengsi, LIU Rui, FAN Quanlin, FENG Xueshang. Characteristics of the boundary layer of magnetic clouds and a new definition of the cloud boundary[J]. Sci. China: Tech. Sci., 2003, 46(1):19-32
    [12] FENG Xueshang, XIANG Changqing, ZHONG Dingkun, FAN Quanlin. The comparison research of Ulysses observation and MHD simulation of 3D solar wind structure[J]. Chin. Sci. Bull., 2005, 50(8):820-826(冯学尚, 向长青, 钟鼎坤, 范全林. 三维太阳风结构的Ulysses观测和MHD模拟的比较研究[J]. 科学通报, 2005, 50(8):820-826)
    [13] FAN Quanlin, WEI Fengsi, FENG Xueshang. Numerical simulation on a possible formation mechanism of interplanetary magnetic cloud boundaries[J]. Comm. Theor. Phys., 2003, 40:247-252
    [14] POWELL K G, ROE P L, LINDE T J, et al. A solution-adaptive upwind scheme for ideal magneto-hydrodynamics[J]. J. Comput. Phys., 1999, 154:284-309
    [15] JANHUNEN P. A positive conservative method for magnetohydrodynamics based on HLL and Roe methods[J]. J. Comput. Phys., 2000, 160:649-661
    [16] DEDNER A, KEMM F, KRÖNER D, et al. Hyperbolic divergence cleaning for the MHD equations[J]. J. Comput. Phys., 2002, 175:645-673
    [17] YALIM M S, ABEELE D V, LANI A, et al. A finite volume implicit time integration method for solving the equations of ideal magneto-hydrodynamics for the hyperbolic divergence cleaning approach[J]. J. Comput. Phys., 2011, 230:6136-6154
    [18] DIEBEL J. Numerical simulation of sub- and supersonic flows in inductively coupled plasma tunnels[R]//Technical Report 09. Belgium: Von Karman Institute for Fluid Dynamics, 2003
    [19] BALSARA D S, SPICER D S. A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations[J]. J. Comput. Phys., 1999, 149:270-292
    [20] HIDALGO M A, CID C, MEDINA J, VINAS A F. A new model for the topology of magnetic clouds in the solar wind[J]. Solar Phys., 2000, 194:165-174
    [21] FENG Xueshang, ZHOU Yufen, WU S T. A novel numerical implementation for solar wind modeling by the modified conservation element/solution element method[J]. Astrophys. J., 2007, 655:1110-1126
  • 加载中
计量
  • 文章访问数:  901
  • HTML全文浏览量:  10
  • PDF下载量:  748
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-19
  • 修回日期:  2016-03-21
  • 刊出日期:  2016-11-15

目录

    /

    返回文章
    返回