留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Using Back Propagation Neural Network Method to Forecast Daily Indices of Solar Activity F10.7

XIAO Chao CHENG Guosheng ZHANG Hua RONG Zhaojin SHEN Chao ZHANG Bo HU Hui

XIAO Chao, CHENG Guosheng, ZHANG Hua, RONG Zhaojin, SHEN Chao, ZHANG Bo, HU Hui. Using Back Propagation Neural Network Method to Forecast Daily Indices of Solar Activity F10.7[J]. 空间科学学报, 2017, 37(1): 1-7. doi: 10.11728/cjss2017.01.001
引用本文: XIAO Chao, CHENG Guosheng, ZHANG Hua, RONG Zhaojin, SHEN Chao, ZHANG Bo, HU Hui. Using Back Propagation Neural Network Method to Forecast Daily Indices of Solar Activity F10.7[J]. 空间科学学报, 2017, 37(1): 1-7. doi: 10.11728/cjss2017.01.001
XIAO Chao, CHENG Guosheng, ZHANG Hua, RONG Zhaojin, SHEN Chao, ZHANG Bo, HU Hui. Using Back Propagation Neural Network Method to Forecast Daily Indices of Solar Activity F10.7[J]. Chinese Journal of Space Science, 2017, 37(1): 1-7. doi: 10.11728/cjss2017.01.001
Citation: XIAO Chao, CHENG Guosheng, ZHANG Hua, RONG Zhaojin, SHEN Chao, ZHANG Bo, HU Hui. Using Back Propagation Neural Network Method to Forecast Daily Indices of Solar Activity F10.7[J]. Chinese Journal of Space Science, 2017, 37(1): 1-7. doi: 10.11728/cjss2017.01.001

Using Back Propagation Neural Network Method to Forecast Daily Indices of Solar Activity F10.7

doi: 10.11728/cjss2017.01.001
基金项目: 

Supported by the National Natural Science Foundation of China (41231066),the Foundation for Ministry of Science and Technology of China (2011CB811404),the Specialized Research Fund for State Key Laboratories of the CAS,and the Scientific Research Staring Foundation for Nanjing University of Information Science and Technology (2013x030)

详细信息
    通讯作者:

    XIAO Chao,E-mail:xc@nuist.edu.cn

  • 中图分类号: P353

Using Back Propagation Neural Network Method to Forecast Daily Indices of Solar Activity F10.7

Funds: 

Supported by the National Natural Science Foundation of China (41231066),the Foundation for Ministry of Science and Technology of China (2011CB811404),the Specialized Research Fund for State Key Laboratories of the CAS,and the Scientific Research Staring Foundation for Nanjing University of Information Science and Technology (2013x030)

  • 摘要: The solar 10.7 cm radio flux,F10.7,a measure of the solar radio flux per unit frequency at a wavelength of 10.7 cm,is a key and serviceable index for monitoring solar activities.The accurate prediction of F10.7 is of significant importance for short-term or long-term space weather forecasting. In this study,we apply Back Propagation (BP) neural network technique to forecast the daily F10.7 based on the trial data set of F10.7 from 1980 to 2001.Results show that this technique is better than the other prediction techniques for short-term forecasting,such as Support Vector Regression method.

     

  • [1] SWARUP G T, KAKINUMA A E, COVINGTON G A, et al. High-resolution studies of ten solar active regions at wavelengths of 3∼21 cm[J]. Astrophys. J., 1963, 137(4):1251-1267
    [2] TAPPING K F, DETRACEY B. The origin of the 10.7 cm flux[J]. Sol. Phys., 1990, 127(2):321-332
    [3] TAPPING K F, CHARROIS D P. Limits to the accuracy of the 10.7 cm flux[J]. Sol. Phys., 1994, 150(1/2):305-315
    [4] COVINGTON A E, MEDD W J. Simultaneous observations of solar radio noise on 1.5 meters and 10.7 centimeters[J]. J. R. Astron. Soc. Can., 1949, 43(1):106-110
    [5] COVINGTON A E. Solar radio emission at 10.7 cm, 1947-1968[J]. J. R. Astron. Soc. Can., 1969, 63(3):125-132
    [6] TAPPING K F. Recent solar radio astronomy at centimeter wavelengths:the temporal variability of the 10.7-cm flux[J]. J. Geophys. Res., 1987, 92(D1):829-838
    [7] ORTIKOV M Y, SHEMELOV V A, SHISHIGIN I V, et al. Ionospheric index of solar activity based on the data of measurements of the spacecraft signals characteristics[J]. J. Atomos. Sol.-Terr. Phys., 2003, 65(16):425-430
    [8] MORDVINOV A V. Prediction of monthly indices of solar activity F10.7 on the basis of a multiplicative autoregression model[J]. Byulletin Solnechnye Dannye Akademie Nauk USSR, 1986, 12(1):67-73
    [9] DMITRIEV A, MINAEVA Y, ORLOV Y, et al. Solar Activity Forecasting on 1999-2000 by Means of Artificial Neural Networks[R]. Hague, the Netherlands:EGS XXIV General Assembly, 1999
    [10] CHATTERJEE T N. On the application of information theory to the optimum state-space reconstruction of the short-term solar radio flux (10.7 cm), and its prediction via a neural network[J]. Monthly Not. Roy. Astron. Soc., 2001, 323(1):101-108
    [11] QUEMERAIS E, BERTAUX J L. 14-day forecast of solar indices using interplanetary Lyman α background data[J]. Geophys. Res. Lett., 2002, 29(2):1-4
    [12] ZHAO J, HAN Y B. Historical data set reconstruction and a prediction method of solar 10.7 cm radio flux[J]. Chin. J. Astron. Astrophys., 2008, 8(4):472-476
    [13] HUANG C, LIU D D, WANG J S. Forecast daily indices of solar activity, F10.7, using support vector regression method[J]. Res. Astron. Astrophys., 2009,9(6):694-702
    [14] HENNEY C J, TOUSSAINT W A, WHITE S M, ARGE C N. Forecasting F10.7 with solar magnetic flux transport modeling[J]. Space Weather, 2012, 10(2):183-204
    [15] RUMELHART D E, MCCLELLAND J L. PDP models and general issues in cognitive science[C]//Parallel Distributed Processing:Explorations In the Microstructure of Cognition. Cambridge MA:MIT Press, 1987:110-146
    [16] XU Z, WANG X, JIN Y. Regional GDP Prediction based on improved BP neural network model[J]. Int. J. Multimedia Ubiquit. Eng., 2014, 9(4):51-62
    [17] WIDROW B, HOFF M E. Adaptive switching circuits[M]//1960 IRE WESCON Convention Record. New York:IRE, 1960:96-104
  • 加载中
计量
  • 文章访问数:  766
  • HTML全文浏览量:  27
  • PDF下载量:  1231
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-31
  • 修回日期:  2016-04-08
  • 刊出日期:  2017-01-15

目录

    /

    返回文章
    返回