留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间电动力绳系的磁弹性屈曲分析

郭才发 陈红英 袁小江

郭才发, 陈红英, 袁小江. 空间电动力绳系的磁弹性屈曲分析[J]. 空间科学学报, 2017, 37(1): 122-128. doi: 10.11728/cjss2017.01.122
引用本文: 郭才发, 陈红英, 袁小江. 空间电动力绳系的磁弹性屈曲分析[J]. 空间科学学报, 2017, 37(1): 122-128. doi: 10.11728/cjss2017.01.122
GUO Caifa, CHEN Hongying, YUAN Xiaojiang. Magneto-elastic Buckling Analysis of Electrodynamic Space Tethers[J]. Journal of Space Science, 2017, 37(1): 122-128. doi: 10.11728/cjss2017.01.122
Citation: GUO Caifa, CHEN Hongying, YUAN Xiaojiang. Magneto-elastic Buckling Analysis of Electrodynamic Space Tethers[J]. Journal of Space Science, 2017, 37(1): 122-128. doi: 10.11728/cjss2017.01.122

空间电动力绳系的磁弹性屈曲分析

doi: 10.11728/cjss2017.01.122
详细信息
    通讯作者:

    郭才发,E-mail:nudtgcf@163.com

  • 中图分类号: V414.2

Magneto-elastic Buckling Analysis of Electrodynamic Space Tethers

  • 摘要: 电动力绳系具有强非线性且运动过程中存在复杂的多场耦合,其磁弹性屈曲问题一直是研究的热点.基于Kirchhoff方程,利用弹性杆模型建立了电动力绳系动力学方程.研究了空间地磁场环境对电动力绳系的影响,分别对电动力绳系的静态和动态稳定性进行深入分析,给出了系统出现分岔的磁场强度临界值.结果表明,随着系统相对角速度的增加,使系统发生分岔的磁场强度临界值逐渐减小.该磁场强度临界值可为电动力绳系电流及其他参数设计提供参考.

     

  • [1] ZHONG R, ZHU Z H. Dynamics of nanosatellite deorbit by bare electrodynamic tether in low Earth orbit[J]. J. Spacecraft Rockets, 2013, 50 (3):691-700
    [2] BOMBARDELLI C, ZANUTTO D, LORENZINI E. Deorbiting performance of bare electrodynamic tethers in inclined orbits[J]. J. Guid. Control Dynam., 2013, 36(5):1550-1556
    [3] KENTARO L, SATOMI K, YOSHIKI M. Experiments and numerical simulations of an electrodynamic tether deployment from a spool-type reel using thrusters[J]. Acta Astron., 2014, 94(1):318-327
    [4] STAROSTIN E L, VAN DER HEIJDEN G H M. Theory of equilibria of elastic 2-braids with interstrand interaction[J]. J. Mech. Phys. Solids, 2014, 64:83-132
    [5] MOON F C. Magnetoelastic instabilities in superconduc-ting structures and Earnshaw's theorem[J]. Mech. Supercond. Struct., 1980, 41:77-90
    [6] THOMPSON J M T, VAN DER HEIJDEN G H M. A graphical criterion for the instability of elastic equilibria under multiple loads:with applications to drill-strings[J]. Int. J. Mech. Sci., 2013, 68:160-170
    [7] XUE Yun, WENG Dewei, CHEN Liqun. Greenhill formula of an elastic rod and Kirchhoff Kinetic analogy[J]. J. Dyn. Control, 2011, 9(3):193-196(薛纭, 翁德玮, 陈立群. 弹性杆的Greenhill公式与Kirchhoff动力学比拟[J]. 动力学与控制学报, 2011, 9(3):193-196)
    [8] WOLFE P. Global bifurcation of an elastic conducting rod in a magnetic field[J]. SIAM J. Math. Anal., 1996, 27:528-542
    [9] VAN DER HEIJDEN G H M, YAGASAKI K. Nonintegrability of an extensible conducting rod in a uniform magnetic field[J]. J. Phys. A:Math. Theor., 2011, 44:1-11
    [10] VAN DER HEIJDEN G H M, SINDEN D. Localisation of a twisted conducting rod in a uniform magnetic field:the Hamiltonian-Hopf-Hopf bifurcation[C]//Proceeding of 7th European Nonlinear Dynamics Conference (ENOC 2011). Rome, Italy, 2011
    [11] VALVERDE J, VAN DER HEIJDEN G H M. Magnetically-induced buckling of a whirling conducting rod with applications to electrodynamic space tethers[J]. J. Nonlinear Sci., 2010, 20:309-339
    [12] XUE Yun, WENG Dewei, CHEN Liqun. Methods of analytical mechanics for exact cosserat elastic rod dyna-mics[J]. Acta Phys. Sin., 2013, 62(4):044601(薛纭, 翁德玮, 陈立群. 精确Cosserat弹性杆的动力学的分析力学方法[J]. 物理学报, 2013, 62(4):044601
    [13] JIANG Maosheng, ZHAO Weijia, CAI Chunhua. A Hamiltonian formulation of a rod model using quarternions and symplectic algorithm[J]. J. Qingdao Univ.:Nat. Sci. Ed., 2012, 25 (1):23-28(姜茂盛, 赵维加, 蔡春花. 弹性杆Hamilton方程的四元数表示及其辛算法[J]. 青岛大学大学学报:自然科学版, 2012, 25 (1):23-28)
    [14] COSMO M L, LORENZINI E C. Tethers in Space Handbook. Smithsonian Astrophysical Observatory[M]. Cambridge:Massachusetts, 1997
  • 加载中
计量
  • 文章访问数:  755
  • HTML全文浏览量:  11
  • PDF下载量:  724
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-07
  • 修回日期:  2016-07-21
  • 刊出日期:  2017-01-15

目录

    /

    返回文章
    返回