留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第24太阳活动周地球附近磁云与非磁云事件的统计分析

娄飞 叶煜东

娄飞, 叶煜东. 第24太阳活动周地球附近磁云与非磁云事件的统计分析[J]. 空间科学学报, 2017, 37(4): 381-394. doi: 10.11728/cjss2017.04.381
引用本文: 娄飞, 叶煜东. 第24太阳活动周地球附近磁云与非磁云事件的统计分析[J]. 空间科学学报, 2017, 37(4): 381-394. doi: 10.11728/cjss2017.04.381
LOU Fei, YE Yudong. Statistical Comparison of Magnetic Clouds with Non-magnetic Clouds in Interplanetary Coronal Mass Ejections for Solar Cycle 24[J]. Journal of Space Science, 2017, 37(4): 381-394. doi: 10.11728/cjss2017.04.381
Citation: LOU Fei, YE Yudong. Statistical Comparison of Magnetic Clouds with Non-magnetic Clouds in Interplanetary Coronal Mass Ejections for Solar Cycle 24[J]. Journal of Space Science, 2017, 37(4): 381-394. doi: 10.11728/cjss2017.04.381

第24太阳活动周地球附近磁云与非磁云事件的统计分析

doi: 10.11728/cjss2017.04.381
详细信息
    作者简介:

    娄飞,E-mail:nightenlogy@qq.com

  • 中图分类号: P353

Statistical Comparison of Magnetic Clouds with Non-magnetic Clouds in Interplanetary Coronal Mass Ejections for Solar Cycle 24

  • 摘要: 为研究第24太阳活动周中磁云(Magnetic Clouds,MC)与非磁云(Non-Magnetic Clouds,non-MC)的等离子体性质及其对空间天气的影响,使用1AU处的观测数据对2008-2015年168个ICME事件进行统计与分析,其中认证出磁云事件68个,占总数的40.48%.通过分析磁云与非磁云等离子体参数对空间天气环境的影响及与太阳活动的关系,整体性质的对比及在第23和24太阳活动周中性质的对比,可以发现:在第24太阳周中,磁云引起的磁暴强度普遍大于非磁云,南北向磁场分量是引起磁暴的重要参数;磁云数和太阳黑子数有很好的相关性,非磁云数与行星际日冕物质抛射总数及黑子数的相关性稍弱,磁云数在太阳周的不同阶段表现出不同的分布特性;磁云的磁场强度和南向磁场分量整体强于非磁云,两者质子温度、密度等参数差异不大.第24周磁云事件引起的地磁效应整体上弱于第23周磁云事件,这与第24周磁云事件最大南向磁场分量、传播速度以及质子温度整体小于第23周磁云事件有关.

     

  • [1] HOWARD R A, SHEELEY N R Jr, KOOMEN M J, et al. Coronal mass ejections:1979-1981[J]. J. Geophys. Res. Space Phys., 1985, 90(A9):8173-8191
    [2] CYR O C S, HOWARD R A, SHEELEY N R Jr, et al. Properties of coronal mass ejections:SOHO LASCO observations from January 1996 to June 1998[J]. J. Geophys. Res. Space Phys., 2000, 105(A8):18169-18185
    [3] GOPALSWAMY N. Coronal mass ejections of solar cycle 23[J]. J. Astrophys. Astron., 2006, 27(2):243-254
    [4] TSURUTANI B T, ECHER E, GUARNIERI F L, et al. CAWSES November 7-8, 2004, superstorm:complex solar and interplanetary features in the post-solar maximum phase[J]. Geophys. Res. Lett., 2008, 35(6):L06S05
    [5] GONZALEZ W D, TSURUTANI B T, DE GONZALEZ A L C. Interplanetary origin of geomagnetic storms[J]. Space Sci. Rev., 1999, 88(3/4):529-562
    [6] HUTTUNEN K E J, SCHWENN R, BOTHMER V, et al. Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of solar cycle 23[J]. Ann. Geophys., 2005, 23(2):625-641
    [7] RICHARDSON I G, CANE H V. Signatures of shock drivers in the solar wind and their dependence on the solar source location[J]. J. Geophys. Res. Space Phys., 1993, 98(A9):15295-15304
    [8] GOLDSTEIN R, NEUGEBAUER M, CLAY D. A statistical study of coronal mass ejection plasma flows[J]. J. Geophys. Res. Space Phys., 1998, 103(A3):4761-4766
    [9] WEI Fengsi, LIU Rui, FAN Quanlin, et al. Identification of the magnetic cloud boundary layers[J]. J. Geophys. Res. Space Phys., 2003, 108(A6):1263
    [10] RICHARDSON I G, CANE H V. Near-earth interplanetary coronal mass ejections during solar cycle 23(1996-2009):catalog and summary of properties[J]. Solar Phys., 2010, 264(1):189-237
    [11] BURLAGA L, SITTLER E, MARIANI F, et al. Magnetic loop behind an interplanetary shock:voyager, Helios, and IMP 8 observations[J]. J. Geophys. Res. Space Phys., 1981, 86(A8):6673-6684
    [12] BORRINI G, GOSLING J T, BAMES J, et al. Helium abundance enhancements in the solar wind[J]. J. Geophys. Res. Space Phys., 1982, 87(A9):7370-7378
    [13] KLEIN L W, BURLAGA L F. Interplanetary magnetic clouds at 1AU[J]. J. Geophys. Res. Space Phys., 1982, 87(A2):613-624
    [14] GALVIN A B, IPAVICH F M, GLOECKLER G, et al. Solar wind iron charge states preceding a driver plasma[J]. J. Geophys. Res. Space Phys., 1987, 92(A11):12069-12081
    [15] RUSSELL C T, SHINDE A A. ICME identification from solar wind ion measurements[J]. Solar Phys., 2003, 216(1):285-294
    [16] WIMMER-SCHWEINGRUBER R F, CROOKER N U, BALOGH A, et al. Understanding interplanetary coronal mass ejection signatures[J]. Space Sci. Rev., 2006, 123(1):177-216
    [17] ZURBUCHEN T H, RICHARDSON I G. In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections[J]. Space Sci. Rev., 2006, 123(1/2/3):31-43
    [18] WU C C, LEPPING R P. Comparison of the characte-ristics of magnetic clouds and magnetic cloud-like structures for the events of 1995-2003[J]. Solar Phys., 2007, 242(1/2):159-165
    [19] WU C C, LEPPING R P. Statistical comparison of magnetic clouds with interplanetary coronal mass ejections for solar cycle 23[J]. Solar Phys., 2011, 269(1):141-153
    [20] BURLAGA L F, SKOUG R M, SMITH C W, et al. Fast ejecta during the ascending phase of solar cycle 23:ACE observations, 1998-1999[J]. J. Geophys. Res. Space Phys., 2001, 106(A10):20957-20977
    [21] WILSON R M, HATHAWAY D H, REICHMANN E J. On the behavior of the sunspot cycle near minimum[J]. J. Geophys. Res. Space Phys., 1996, 101(A9):19967-19972
    [22] LI Kejun, FENG Wen, LIANG Hongfei. The abnormal 24th solar cycle the first complete solar cycle of the new millennium[J]. Sci. Sin. Phys. Mech. Astron., 2010, 40(10):1293-1301. (李可军, 冯雯, 梁红飞. 异常的第24太阳活动周——新千年的第一个完整的太阳活动周[J]. 中国科学:物理学力学天文学, 2010, 40(10):1293-1301)
    [23] OWENS M J, LOCKWOOD M, BARNARD L, et al. Solar cycle 24:implications for energetic particles and long-term space climate change[J]. Geophys. Res. Lett., 2011, 38(19):L19106
    [24] SVALGAARD L, CLIVER E W, KAMIDE Y. Sunspot cycle 24:smallest cycle in 100 years[J]. Geophys. Res. Lett., 2005, 32(1):L01104
    [25] CLILVERD M A, CLARKE E, ULICH T, et al. Predicting solar cycle 24 and beyond[J]. Space Weather, 2006, 4(9):S09005
    [26] RUSSELL C T, LUHMANN J G, JIAN L K. How unprecedented a solar minimum[J]. Rev. Geophys., 2010, 48(2):RG2004
    [27] SOLANKI S K, KRIVOVA N A. Analyzing solar cycles[J]. Science, 2011, 334(6058):916-917
    [28] LIU Y, RICHARDSON J D, BELCHER J W. A statistical study of the properties of interplanetary coronal mass ejections from 0.3 to 5.4 AU[J]. Planet. Space Sci., 2005, 53(1-3):3-17
    [29] CANE H V, RICHARDSON I G. Interplanetary coronal mass ejections in the near-Earth solar wind during 1996-2002[J]. J. Geophys. Res. Space Phys., 2003, 108(A4):1156
    [30] RICHARDSON I G, CANE H V. Signatures of shock drivers in the solar wind and their dependence on the solar source location[J]. J. Geophys. Res. Space Phys., 1993, 98(A9):15295-15304
    [31] RICHARDSON I G, CANE H V. Regions of abnormally low proton temperature in the solar wind (1965-1991) and their association with ejecta[J]. J. Geophys. Res. Space Phys., 1995, 100(A12):23397-23412
    [32] RICHARDSON I G, CANE H V. Identification of interplanetary coronal mass ejections at 1AU using multiple solar wind plasma composition anomalies[J]. J. Geophys. Res. Space Phys., 2004, 109(A9):A09104
    [33] ZHANG J, RICHARDSON I G, WEBB D F, et al. Solar and interplanetary sources of major geomagnetic storms (Dst ≤ -100nT) during 19962005[J]. J. Geophys. Res. Space Phys., 2007, 112(A10):A10102
    [34] GONZALEZ W D, JOSELYN J A, KAMIDE Y, et al. What is a geomagnetic storm[J]. J. Geophys. Res. Space Phys., 1994, 99(A4):5771-5792
    [35] WEBB D F, HOWARD R A. The solar cycle variation of coronal mass ejections and the solar wind mass flux[J]. J. Geophys. Res. Space Phys., 1994, 99(A3):4201-4220
    [36] WU C C, LEPPING R P, GOPALSWAMY N. Relationships among magnetic clouds, CMEs, and geomagnetic storms[J]. Solar Phys., 2006, 239(1/2):449-460
    [37] LEPPING R P, WU C C. Selection effects in identifying magnetic clouds and the importance of the closest approach parameter[J]. Ann. Geophys., 2010, 28(8):1539-1552
    [38] MACQUEEN R M, HUNDHAUSEN A J, CONOVER C W. The propagation of coronal mass ejection transients[J]. J. Geophys. Res. Space Phys., 1986, 91(A1):31-38
    [39] SHEN C L, WANG Y M, GUI B, et al. Kinematic evolution of a slow CME in corona viewed by STEREO-B on 8 October 2007[J]. Solar Phys., 2011, 269(2):389-400
  • 加载中
计量
  • 文章访问数:  926
  • HTML全文浏览量:  19
  • PDF下载量:  883
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-08
  • 修回日期:  2016-11-12
  • 刊出日期:  2017-07-15

目录

    /

    返回文章
    返回