留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微重力下加热面尺寸对气泡动力学行为的影响

齐宝金 魏进家 王雪丽 赵建福

齐宝金, 魏进家, 王雪丽, 赵建福. 微重力下加热面尺寸对气泡动力学行为的影响[J]. 空间科学学报, 2017, 37(4): 455-467. doi: 10.11728/cjss2017.04.455
引用本文: 齐宝金, 魏进家, 王雪丽, 赵建福. 微重力下加热面尺寸对气泡动力学行为的影响[J]. 空间科学学报, 2017, 37(4): 455-467. doi: 10.11728/cjss2017.04.455
QI Baojin, WEI Jinjia, WANG Xueli, ZHAO Jianfu. Influence of Chip Size on Bubble Dynamic Behavior in Microgravity[J]. Journal of Space Science, 2017, 37(4): 455-467. doi: 10.11728/cjss2017.04.455
Citation: QI Baojin, WEI Jinjia, WANG Xueli, ZHAO Jianfu. Influence of Chip Size on Bubble Dynamic Behavior in Microgravity[J]. Journal of Space Science, 2017, 37(4): 455-467. doi: 10.11728/cjss2017.04.455

微重力下加热面尺寸对气泡动力学行为的影响

doi: 10.11728/cjss2017.04.455
基金项目: 

国家自然科学基金资助项目(51306141,51225601)和教育部高等学校博士学科点基金项目(20120201120068)共同资助

详细信息
    作者简介:

    齐宝金,E-mail:bjqi@mail.xjtu.edu.cn

    通讯作者:

    魏进家,E-mail:jjwei@mail.xjtu.edu.cn

  • 中图分类号: TK124

Influence of Chip Size on Bubble Dynamic Behavior in Microgravity

  • 摘要: 为揭示微重力环境下加热表面尺寸对气泡动力学行为的影响,通过对比实验研究了不同热流密度条件下两种尺寸芯片表面核态沸腾过程中气泡的动力学行为.结果表明,低热流密度时两种尺寸芯片表面均能维持典型的孤立气泡沸腾,气泡生长合并过程缓慢,仅大芯片表面气泡脱落,并且体积达到小芯片气泡的3.4倍.两芯片在中等热流密度下均呈稳定的核态沸腾,气泡生长合并加速、脱离频率升高.大芯片表面气泡脱离次数明显高于小芯片,脱离气泡产生的尾流效应减小了后续气泡的脱离直径,进而有效抑制了气泡底部干斑的形成.高热流密度时,小芯片处于膜态沸腾状态,沸腾换热显著恶化;而大芯片表面仍能维较持稳定的核态沸腾.因此,增大芯片尺寸能有效促进气泡脱离,提高临界热流密度.继续升高大芯片热流至临界热流密度之上,虽然进入膜态沸腾换热状态,但是气泡无法完全覆盖芯片表面且可缓慢滑移,从而缓和了芯片温度上升速率.

     

  • [1] KONISHI C, MUDAWAR I. Review of flow boiling and critical heat flux in microgravity[J]. Int. J. Heat Mass Transfer, 2015, 80:469-493
    [2] LI Jing, ZHAO Jianfu, XUE Yanfang, et al. Experimental study on growth of an isolated bubble utilizing short-term microgravity drop tower[J]. Chin. J. Space Sci., 2012, 32(4):544-549(李晶, 赵建福, 薛艳芳, 等. 孤立气泡生长过程的短时微重力落塔实验研究[J]. 空间科学学报, 2012, 32(4):544-549)
    [3] WEI Jinjia, ZHANG Yonghai. Review of enhanced boiling heat transfer over micro-pin-finned surfaces[J]. CIESC J., 2016, 67(1):97-108(魏进家, 张永海. 柱状微结构表面强化沸腾换热研究综述[J]. 化工学报, 2016, 67(1):97-108)
    [4] WANG Xueli, ZHANG Yonghai, QI Baojin, et al. Experi-mental study of the heater size effect on subcooled pool boiling heat transfer of FC-72 in microgravity[J]. Exp. Therm. Fluid. Sci., 2016, 76:275-286
    [5] ZHAO Jianfu, HU Wenrui. Study on pool boiling heat transfer in microgravity[J]. Chin. J. Space Sci., 2009, 29(1):145-149(赵建福, 胡文瑞. 微重力池沸腾传热研究[J]. 空间科学学报, 2009, 29(1):145-149)
    [6] ZHANG Yonghai, WEI Jinjia, XUE Yanfang, et al. Bubble dynamics in nucleate pool boiling on micro-pin-finned surfaces in microgravity[J]. Appl. Therm. Eng., 2014, 70(1):172-182
    [7] KOROLEV P V, KRYUKOV A P, PUZINA Y Y. Effect of the permeability of the porous shell on the vapor film thickness during boiling of superfluid helium in microgravity[J]. J. Appl. Mech. Tech. Phys., 2015, 56(4):644-653
    [8] WARRIER G R, DHIR V K, CHAO D F. Nucleate Pool Boiling experiment (NPBX) in microgravity:international space station[J]. Int. J. Heat Mass Transfer, 2015, 83:781-798
    [9] XUE Yanfang, ZHAO Jianfu, WEI Jinjia, et al. Experimental study of nucleate pool boiling of FC-72 on smooth surface under microgravity[J]. Microgr. Sci. Technol., 2011, 23(S1):75-85
    [10] LI Z D, ZHANG L, ZHAO J F, et al. Numerical simulation of bubble dynamics and heat transfer with transient thermal response of solid wall during pool boiling of FC-72[J]. Int. J. Heat Mass Transfer, 2015, 84:409-418
    [11] KOELN J P, BOULWARE J C, BAN Heng, et al. Observations on braided thin wire nucleate boiling in microgravity[J]. Int. J. Heat Fluid Flow, 2011, 32(5):973-981
    [12] QI Baojin, WEI Jinjia, ZHAO Jianfu, et al. Dynamics study on bubble wake effect under short period of microgravity[J]. J. Eng. Therm., 2015, 36(1):184-188(齐宝金, 魏进家, 赵建福, 等. 短时微重力下气泡尾流效应的动力学特性研究[J]. 工程热物理学报, 2015, 36(1):184-188)
    [13] MUNRO R T, KOELN J P, ANDREW W, et al. Phase change heat transfer and bubble behavior observed on twisted wire heater geometries in microgravity[J]. Int. J. Heat Fluid Flow, 2014, 47:21-30
    [14] XUE Yanfang, ZHAO Jianfu, WEI Jinjia, et al. Experimental study of nucleate pool boiling of FC-72 on micro-pin-finned surface under microgravity[J]. Int. J. Heat Mass Transfer, 2013, 63:425-433
    [15] XUE Yanfang, WEI Jinjia, ZHAO Jianfu, et al. Experimental study of pool boiling of FC-72 over smooth surface under microgravity[J]. J. Eng. Therm., 2011, 32(3):423-426(薛艳芳, 魏进家, 赵建福, 等. 微重力下光滑表面上FC-72的池沸腾实验研究[J]. 工程热物理学报, 2011, 32(3):423-426)
    [16] RAJ R, KIM J, MCQUILLEN J. Pool boiling heat transfer on the international space station:experimental results and model verification[J]. J. Heat Transfer, 2012, 134(10):101504
    [17] OHTA H, BABA S. Boiling experiments under microgra-vity conditions[J]. Exp. Heat Transfer, 2013, 26(2/3):266-295
    [18] AKTINOL E, WARRIER G R, DHIR V K, et al. Single bubble dynamics under microgravity conditions in the presence of dissolved gas in the liquid[J]. Int. J. Heat Mass Transfer, 2014, 79:251-268
    [19] KANNENGIESER O, COLIN C, BERGEZ W. Pool boiling with non-condensable gas in microgravity:results of a sounding rocket experiment[J]. Microgr. Sci. Technol., 2010, 22(3):447-454
    [20] ZHAO J F, LIU G, WAN S X, et al. Bubble dynamics in nucleate pool boiling on thin wires in microgravity[J]. Microgr. Sci. Technol., 2008, 20(2):81-89
    [21] DHIR V K, WARRIER G R, AKTINOL E, et al. Nucleate pool boiling experiments (NPBX) on the international space station[J]. Microgr. Sci. Technol., 2012, 24(5):307-325
    [22] WU Jinfeng, DHIR V R. Numerical simulation of dynamics and heat transfer associated with a single bubble in subcooled boiling and in the presence of noncondensables[J]. J. Heat Transfer, 2011, 133(4):041502
    [23] WAN Shixin, ZHAO Jianfu, LIU Gang. Dynamics of discrete bubble in nucleate pool boiling on thin wires in microgravity[J]. J. Therm. Sci., 2009, 18(1):13-19
    [24] SOUZA R R, PASSOS J C, CARDOSO E M. Confined and unconfined nucleate boiling under terrestrial and microgravity conditions[J]. Appl. Therm. Eng., 2013, 51(1-2):1290-1296
    [25] ZHANG Nengli, CHAO D F. Models for enhanced boiling heat transfer by unusual Marangoni effects under microgravity conditions[J]. Int. Commun. Heat Mass Transfer, 1999, 26(8):1081-1090
  • 加载中
计量
  • 文章访问数:  1031
  • HTML全文浏览量:  16
  • PDF下载量:  1248
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-01
  • 修回日期:  2017-01-15
  • 刊出日期:  2017-07-15

目录

    /

    返回文章
    返回