留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁鞘等离子体密度统计建模

陈凯文 来鹏 赵凯 蒋勇

陈凯文, 来鹏, 赵凯, 蒋勇. 磁鞘等离子体密度统计建模[J]. 空间科学学报, 2017, 37(6): 690-701. doi: 10.11728/cjss2017.06.690
引用本文: 陈凯文, 来鹏, 赵凯, 蒋勇. 磁鞘等离子体密度统计建模[J]. 空间科学学报, 2017, 37(6): 690-701. doi: 10.11728/cjss2017.06.690
CHEN Kaiwen, LAI Peng, ZHAO Kai, JIANG Yong. Statistical Modeling Research on the Magnetosheath Plasma Density[J]. Chinese Journal of Space Science, 2017, 37(6): 690-701. doi: 10.11728/cjss2017.06.690
Citation: CHEN Kaiwen, LAI Peng, ZHAO Kai, JIANG Yong. Statistical Modeling Research on the Magnetosheath Plasma Density[J]. Chinese Journal of Space Science, 2017, 37(6): 690-701. doi: 10.11728/cjss2017.06.690

磁鞘等离子体密度统计建模

doi: 10.11728/cjss2017.06.690
基金项目: 

国家自然科学基金项目(41604134)和江苏省自然科学基金项目(BK20161530)共同资助

详细信息
    作者简介:

    来鹏,laipeng@amss.ac.cn

  • 中图分类号: P354.4

Statistical Modeling Research on the Magnetosheath Plasma Density

  • 摘要: 利用理想磁流体LFM模型的模拟数据,基于非参数统计方法对2004年11月14日03:00UT-07:00UT磁暴恢复相期间磁鞘等离子体平均密度进行建模.分析磁鞘等离子体平均密度与上游太阳风参数、行星际磁场参数及地磁扰动参数的统计关系,建立基于数据降维的经验模型.结果表明,电离层扰动强度因子、太阳风-磁层耦合强度因子和日地空间因果链耦合强度因子是影响磁鞘等离子体平均密度的三个主要方面.磁暴恢复相期间电离层上行离子是磁层环电流和磁尾等离子体的重要离子来源.建模分析过程表明,利用经验模型对空间物理过程开展建模,数据的严重多重共线性通常会导致模型的精度较差.而利用SIR和LPR建立的磁鞘等离子体平均密度随相关参数变化的经验模型可以有效解决该问题,具有较好的预测精度,统计特征显著.

     

  • [1] GLOECKLER G, IPAVICH F M, HAMILTON D C, et al. Solar wind carbon, nitrogen and oxygen abunda-nces measured in the Earth's magnetosheath with AMPTE/CCE[J]. Geophys. Res. Lett., 1986, 13(10):793-796
    [2] SIBECK D G, GOSLING J T. Magnetosheath density fluctuations and magnetopause motion[J]. J. Geophys. Res., 1996, 101(A1):31-40
    [3] PHAN T D, PASCHMANN G, BAUMJOHANN W, et al. The magnetosheath region adjacent to the dayside magnetopause:AMPTE/IRM observations[J]. J. Geophys. Res. Space Phys., 1994, 99(A1):121-141
    [4] SKJÆ ELAND Å, MOEN J, CARLSON H C. Which cusp upflow events can possibly turn into outflows[J]. J. Geophys. Res. Space Phys., 2014, 119(10):6876-6890
    [5] ARVELIUS S, YAMAUCHI M, NILSSON H, et al. Statistics of high-altitude and high-latitude O+ ion outflows observed by Cluster/CIS[J]. Ann. Geophys., 2005, 23(5):1909-1916
    [6] BURCHILL J K, KNUDSEN D J, CLEMMONS J H, et al. Thermal ion upflow in the cusp ionosphere and its dependence on soft electron energy flux[J]. J. Geophys. Res. Space Phys., 2010, 115(A5):A05206
    [7] REDMON R J, PETERSON W K, ANDERSSON L, et al. A global comparison of O+ upward flows at 850km and outflow rates at 6000km during nonstorm times[J]. J. Geophys. Res. Space Phys., 2012, 117(A4):A04213
    [8] LYON J G, FEDDER J A, MOBARRY C M. The Lyon-Fedder-Mobarry (LFM) global MHD magnetospheric si-mulation code[J]. J. Atmos. Solar-Terr. Phys., 2004, 66(15/16):1333-1350
    [9] FEDDER J A, LYON J G. The solar wind-magne-to-sphere-ionosphere current-voltage relationship[J]. Geophys. Res. Lett., 1987, 14(10):880-883
    [10] WANG W, WILTBERGER M, BURNS A G, et al. Initial results from the coupled magnetosphere-ionosphere-thermosphere model:thermosphere-ionosphere respon-ses[J]. J. Atmos. Solar-Terr. Phys., 2004, 66(15/16):1425-1442
    [11] TOFFOLETTO F, SAZYKIN S, SPIRO R W, et al. Inner magnetospheric modeling with the rice convection mo-del[J]. Space Sci. Rev., 2003, 107(1/2):175-196
    [12] FU Suiyan, PU Zuyin, LIU Zhenxing. Numerical simulation of turbulent reconnection at the magnetopause[J]. Acta Geophys. Sin., 1994, 37(3):282-290(傅绥燕, 濮祖荫, 刘振兴. 地球磁层顶湍动重联的数值模拟[J]. 地球物理学报, 1994, 37(3):282-290)
    [13] UGAI M, WANG W B. Computer simulations on three-dimensional plasmoid dynamics by the spontaneous fast reconnection model[J]. J. Geophys. Res. Space Phys., 1998, 103(A3):4573-4585
    [14] WANG W, WILTBERGER M, BURNS A G, et al. Initial results from the coupled magnetosphere-ionosphere-thermosphere model:thermosphere-ionosphere respon-ses[J]. J. Atmos. Solar-Terr. Phys., 2004, 66(15/16):1425-1442
    [15] SHUE J H, CHAO J K, FU H C, et al. A new functional form to study the solar wind control of the magnetopause size and shape[J]. J. Geophys. Res. Space Phys., 1997, 102(A5):9497-9511
    [16] LI K C. Sliced inverse regression for dimension reduction[J]. J. Am. Stat. Assoc., 1991, 86(414):316-328
    [17] NADARAYA E A. On estimating regression[J]. Theory Probab. Appl., 1964, 9(1):141-142
    [18] WATSON G S. Smooth regression analysis[J]. Sankhyā Ser. A, 1964, 26(4):359-372
    [19] FAN Jianqing, GASSER T, GIJBELS I, et al. Local polynomial regression:optimal kernels and asymptotic minimax efficiency[J]. Ann. Inst. Stat. Math., 1996, 49(1):79-99
    [20] KEMSLEY E K. Discriminant analysis of high-dimen-sional data:a comparison of principal components analysis and partial least squares data reduction methods[J]. Chem. Intell. Lab. Syst., 1996, 33(1):47-61
    [21] PI G, SHUE J H, PARK J S, et al.A comparison of the IMF structure and the magnetic field in the magnetosheath under the radial IMF conditions[J]. Adv. Space Res., 2015, 58(2):181-187
    [22] RAKHMANOVA L, RIAZANTSEVA M, ZASTENKER G. Correlation level between solar wind and magnetosheath plasma and magnetic field parameters[J]. Adv. Space Res., 2015, 58(2):157-165
  • 加载中
计量
  • 文章访问数:  927
  • HTML全文浏览量:  27
  • PDF下载量:  722
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-30
  • 修回日期:  2017-06-20
  • 刊出日期:  2017-11-15

目录

    /

    返回文章
    返回