留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MMS星座对磁层顶磁通量绳内离子惯性尺度结构的观测

刘杨 濮祖荫 谢伦 郭瑞龙 王晓钢 肖池阶 史全岐 DUNLOP M BOGDANOVA Y V MOORE T E RUSSELL C T LINDQVIST P A TORBERT R B POLLOCK C ZHAO Cong

刘杨, 濮祖荫, 谢伦, 郭瑞龙, 王晓钢, 肖池阶, 史全岐, DUNLOP M, BOGDANOVA Y V, MOORE T E, RUSSELL C T, LINDQVIST P A, TORBERT R B, POLLOCK C, ZHAO Cong. MMS星座对磁层顶磁通量绳内离子惯性尺度结构的观测[J]. 空间科学学报, 2018, 38(2): 147-168. doi: 10.11728/cjss2018.02.147
引用本文: 刘杨, 濮祖荫, 谢伦, 郭瑞龙, 王晓钢, 肖池阶, 史全岐, DUNLOP M, BOGDANOVA Y V, MOORE T E, RUSSELL C T, LINDQVIST P A, TORBERT R B, POLLOCK C, ZHAO Cong. MMS星座对磁层顶磁通量绳内离子惯性尺度结构的观测[J]. 空间科学学报, 2018, 38(2): 147-168. doi: 10.11728/cjss2018.02.147
LIU Yang, PU Zuyin, XIE Lun, GUO Ruilong, WANG Xiaogang, XIAO Chijie, SHI Quanqi, DUNLOP M, BOGDANOVA Y V, MOORE T E, RUSSELL C T, LINDQVIST P A, TORBERT R B, POLLOCK C, ZHAO Cong. Ion-scale Structures in Flux Ropes Observed by MMS at the Magnetopause[J]. Chinese Journal of Space Science, 2018, 38(2): 147-168. doi: 10.11728/cjss2018.02.147
Citation: LIU Yang, PU Zuyin, XIE Lun, GUO Ruilong, WANG Xiaogang, XIAO Chijie, SHI Quanqi, DUNLOP M, BOGDANOVA Y V, MOORE T E, RUSSELL C T, LINDQVIST P A, TORBERT R B, POLLOCK C, ZHAO Cong. Ion-scale Structures in Flux Ropes Observed by MMS at the Magnetopause[J]. Chinese Journal of Space Science, 2018, 38(2): 147-168. doi: 10.11728/cjss2018.02.147

MMS星座对磁层顶磁通量绳内离子惯性尺度结构的观测

doi: 10.11728/cjss2018.02.147
基金项目: 

国家自然科学基金项目资助(41274167,41674164)

详细信息
    作者简介:

    刘杨,E-mail:xijubear@163.com

  • 中图分类号: P353

Ion-scale Structures in Flux Ropes Observed by MMS at the Magnetopause

  • 摘要: 利用MMS观测数据,对磁层顶通量绳内离子惯性尺度(di)的结构进行分析研究.结果发现,许多不同尺度(约1di至数十di)的通量绳内都存在具有di尺度的电流 j m,其方向在磁层顶局地坐标系的-M方向,即与磁层顶查普曼-费拉罗电流同向,由电子在+M方向的运动( v em)携带.这些电流结构具有以下特征:磁鞘与磁层成分混合,磁场为开放形态;离子去磁化,电子与磁场冻结;N方向(即垂直于磁层顶电流片方向)的电场 E n显著增大,幅度达到约20mV·m-1,并伴有明显的尖峰状起伏,该增强和尖峰状起伏的电场对应于霍尔电场.分析表明,电流、电子与离子运动的偏离以及霍尔电场之间遵从广义欧姆定律,三者密切关联.进一步对磁层顶磁重联的探测数据进行分析发现,在很多重联区内也存在与通量绳内相似的结构,其尺度约为di量级,其中霍尔电场 E N、电流 j M和电子速度 v eM均与通量绳内对应物理量的方向相同且幅度相近.基于上述观测事实,采用经典FTE通量绳模型,对通量绳内电流、电子运动和霍尔电场的起源进行了初步探讨,认为其来源于磁层顶无碰撞磁重联区内的相应结构,并且后者在离子尺度通量绳的形成过程中起到重要作用.

     

  • [1] LE G, GOSLING J T, RUSSELL C T, et al. The magnetic and plasma structure of flux transfer events[J]. J. Geophys. Res., 1999, 104(A1):233-245
    [2] HAERENDEL G, PASCHMANN G, SCKOPKE N, et al. The frontside boundary layer of the magnetosphere and the problem of reconnection[J]. J. Geophys. Res., 1978, 83(A7):3195-3216
    [3] RUSSELL C T, ELPHIC R C. Initial ISEE magnetometer results:magnetopause observations[J]. Space Sci. Rev., 1978, 22(6):681-715
    [4] RIJNBEEK R P, COWLEY S W H, SOUTHWOOD D J, et al. A survey of dayside flux transfer events observed by ISEE 1 and 2 magnetometers[J]. J. Geophys. Res., 1984, 89(A2):786-800
    [5] PASCHMANN G, HAERENDEL G, PAPAMASTORAKIS I, et al. Plasma and magnetic field characteristics of magnetic flux transfer events[J]. J. Geophys. Res., 1982, 87(A4):2159-2168
    [6] ELPHIC R C. Observations of flux transfer events:A review[M]//Physics of the Magnetopause. Washington, DC:AGU, 1995:225-233
    [7] EASTWOOD J P, PHAN T D, FEAR R C, et al. Survival of Flux Transfer Event (FTE) flux ropes far along the tail magnetopause[J]. J. Geophys. Res., 2012, 117(A8):A08222
    [8] ZHANG H, KIVELSON M G, ANGELOPOULOS V, et al. Generation and properties of in vivo flux transfer events[J]. J. Geophys. Res., 2012, 117(A5):A05224
    [9] LEE L C, FU Z F. A theory of magnetic flux transfer at the earth's magnetopause[J]. Geophys. Res. Lett., 1985, 12(2):105-108
    [10] RAEDER J. Flux transfer events:1. Generation mechanism for strong southward IMF[J]. Ann. Geophys., 2006, 24(1):381-392
    [11] SCHOLER M. Strong core magnetic fields in magnetopause flux transfer events[J]. Geophys. Res. Lett., 1988, 15(8):748-751
    [12] SOUTHWOOD D J, FARRUGIA C J, SAUNDERS M A. What are flux transfer events[J]. Planet. Space Sci., 1988, 36(5):503-508
    [13] LIU Z X, HU Y D. Local magnetic reconnection caused by vortices in the flow field[J]. Geophys. Res. Lett., 1988, 15(8):752-755
    [14] PU Z Y, HOU P T, LIU Z X. Vortex-induced tearing mode instability as a source of flux transfer events[J]. J. Geophys. Res., 1990, 95(A11):18861-18869
    [15] CHEN L J, BHATTACHARJEE A, PUHL-QUINN P A, et al. Observation of energetic electrons within magnetic islands[J]. Nat. Phys., 2008, 4(1):19-23
    [16] CHEN L J, BESSHO N, LEFEBVRE B, et al. Multispacecraft observations of the electron current sheet, neighboring magnetic islands, and electron acceleration during magnetotail reconnection[J]. Phys. Plasmas, 2009, 16(5):056501. DOI: 10.1063/1.3112744
    [17] HUANG S Y, VAIVADS A, KHOTYAINTSEV Y V, et al. Electron acceleration in the reconnection diffusion region:Cluster observations[J]. Geophys. Res. Lett., 2012, 39(11):L11103. DOI: 10.1029/2012GL051946
    [18] HUANG S Y, RETINO A, PHAN T D, et al. In situ observations of flux rope at the separatrix region of magnetic reconnection[J]. J. Geophys. Res., 2016, 121(1):205-213
    [19] DAUGHTON W, ROYTERSHTEYN V, KARIMABADI H, et al. Role of electron physics in the development of turbulent magnetic reconnection in collisionless plasmas[J]. Nat. Phys., 2011, 7(7):539-542
    [20] DRAKE J F, SWISDAK M, CHE H, et al. Electron acceleration from contracting magnetic islands during reconnection[J]. Nature, 2006, 443(7111):553-556
    [21] WANG Rongsheng, LU Quanming, LI Xing, et al. Observations of energetic electrons up to 200keV associated with a secondary island near the center of an ion diffusion region:a Cluster case study[J]. J. Geophys. Res., 2010, 115(A11):A11201. DOI: 10.1029/2010JA015473
    [22] EASTWOOD J P, PHAN T D, CASSAK P A, et al. Ion-scale secondary flux ropes generated by magnetopause reconnection as resolved by MMS[J]. Geophys. Res. Lett., 2016, 43(10):4716-4724
    [23] HWANG K J, SIBECK D J, GILES B L, et al. The substructure of a flux transfer event observed by the MMS spacecraft[J]. Geophys. Res. Lett., 2016:43(18):9434-9443
    [24] TEH W L, DENTON R E, SONNERUP B U Ö, et al. MMS observations of oblique small-scale magnetopause flux ropes near the ion diffusion region during weak guide-field reconnection[J]. Geophys. Res. Lett., 2017, 44(13):6517-6524
    [25] TEH W L, NAKAMURA T K M, NAKAMURA R, et al. Evolution of a typical ion-scale magnetic flux rope caused by thermal pressure enhancement[J]. J. Geophys. Res., 2017, 122(2):2040-2050
    [26] RUSSELL C T, ANDERSON B J, BAUMJOHANN W, et al. The magnetospheric multiscale magnetometers[J]. Space Sci. Rev., 2016, 199(1/2/3/4):189-256
    [27] TORBERT R B, RUSSELL C T, MAGNES W, et al. The FIELDS instrument suite on MMS:Scientific objectives, measurements, and data products[J]. Space Sci. Rev., 2016, 199(1/2/3/4):105-135
    [28] LINDQVIST P A, OLSSON G, TORBERT R B, et al. The spin-plane double probe electric field instrument for MMS[J]. Space Sci. Rev., 2016, 199(1/2/3/4):137-165
    [29] POLLOCK C, MOORE T, JACQUES A, et al. Fast plasma investigation for magnetospheric multiscale[J]. Space Sci. Rev., 2016, 199(1/2/3/4):331-406
    [30] SONNERUP B U Ö, SCHEIBLE M. Minimum and maximum variance analysis[M]//Analysis Methods for Multi-Spacecraft Data. ISSI Scientific Reports SR-001. Noordwijk, Netherlands:International Space Science Institute, 1998:185-220
    [31] XIAO C J, PU Z Y, MA Z W, et al. Inferring of flux rope orientation with the minimum variance analysis technique[J]. J. Geophys. Res., 2004, 109(A11):A11218. DOI: 10.1029/2004JA010594
    [32] RUSSELL C T, MELLOTT M M, SMITH E J, et al. Multiple spacecraft observations of interplanetary shocks:four spacecraft determination of shock normals[J]. J. Geophys. Res., 1983, 88(A6):4739-4748
    [33] SCHWARTZ S J. Shock and discontinuity normals, mach numbers, and related parameters[R]//Analysis Methods for Multi-Spacecraft Data. ISSI Scientific Report SR-001. Bern:International Space Science Institute, 1998:249-270
    [34] ZHOU X Z, ZONG Q G, PU Z Y, et al. Multiple triangulation analysis:another approach to determine the orientation of magnetic flux ropes[J]. Ann. Geophys., 2006, 24(6):1759-1765
    [35] ZHOU X Z, ZONG Q G, WANG J, et al. Multiple triangulation analysis:application to determine the velocity of 2-D structures[J]. Ann. Geophys., 2006, 24(11):3173-3177
    [36] SHI Q Q, SHEN C, PU Z Y, et al. Dimensional analysis of observed structures using multipoint magnetic field measurements:Application to Cluster[J]. Geophys. Res. Lett., 2005, 32(12):L12105. DOI: 10.1029/2005GL022454
    [37] SHI Q Q, SHEN C, DUNLOP M W, et al. Motion of observed structures calculated from multi-point magnetic field measurements:Application to Cluster[J]. Geophys. Res. Lett., 2006, 33(8):L08109. DOI: 10.1029/2005GL025073
    [38] DE HOFFMANN F, TELLER E. Magneto-hydrodynamic shocks[J]. Phys. Rev., 1950, 80(4):692-703.
    [39] MOZER F S. Criteria for and statistics of electron diffusion regions associated with subsolar magnetic field reconnection[J]. J. Geophys. Res., 2005, 110(A12):A12222. DOI: 10.1029/2005JA011258
    [40] ZHONG J, PU Z Y, DUNLOP M W, et al. Three-dimensional magnetic flux rope structure formed by multiple sequential X-line reconnection at the magnetopause[J]. J. Geophys. Res., 2013, 118(5):1904-1911
    [41] PU Z Y, RAEDER J, ZHONG J, et al. Magnetic topologies of an in vivo FTE observed by Double Star/TC-1 at Earth's magnetopause[J]. Geophys. Res. Lett., 2013, 40(14):3502-3506
    [42] LÜ Leiqi, PU Zuyin, XIE Lun. Multiple magnetic topologies in flux transfer events:THEMIS measurements[J]. Sci. China Technol. Sci., 2016, 59(8):1283-1293
    [43] ROSSI B OLBERT S. Introduction to the Physics of Space[M]. New York:McGraw-Hill, 1970
    [44] EASTWOOD J P, PHAN T D, MOZER F S, et al. Multi-point observations of the Hall electromagnetic field and secondary island formation during magnetic Reconnection[J]. J. Geophys. Res., 2007, 112(A6):A06235. DOI: 10.1029/2006JA012158
    [45] SHAY M A, DRAKE J F SWISDAK M. Two-scale structure of the electron dissipation region during collisionless magnetic reconnection[J]. Phys. Rev. Lett., 2007, 99(15):155002. DOI: 10.1103/PhysRevLett.99.155002
    [46] MOZER F S, BALE S D, PHAN T D. Evidence of diffusion regions at a subsolar magnetopause crossing[J]. Phys. Rev. Lett., 2002, 89(1):015002
    [47] EASTWOOD J P, PHAN T D, ØIEROSET M, et al. Average properties of the magnetic reconnection ion diffusion region in the Earth's magnetotail:the 2001-2005 Cluster observations and comparison with simulations[J]. J. Geophys. Res., 2010, 115(A8):A08215. DOI: 10.1029/2009JA014962
    [48] PRITCHETT P L, MOZER F S. Asymmetric magnetic reconnection in the presence of a guide field[J]. J. Geophys. Res., 2009, 114(A11):A11210. DOI: 10.1029/2009JA014343
    [49] HESSE M, LIU Y H, CHEN L J, et al. On the electron diffusion region in asymmetric reconnection with a guide magnetic field[J]. Geophys. Res. Lett., 2016, 43(6):2359-2364
    [50] BURCH J L, TORBERT R B, PHAN T D, et al. Electron-scale measurements of magnetic reconnection in space[J]. Science, 2016, 352(6290):aaf2939. DOI:10.1126/science. aaf2939
    [51] CHEN L J, HESSE M, WANG Shan, et al. Electron energization and mixing observed by MMS in the vicinity of an electron diffusion region during magnetopause reconnection[J]. Geophys. Res. Lett., 2016, 43(12):6036-6043
    [52] WANG Rongsheng, NAKAMURA R, LU Quanming, et al. Electron-scale quadrants of the Hall magnetic field observed by the Magnetospheric Multiscale spacecraft during asymmetric reconnection[J]. Phys. Rev. Lett., 2017, 118(17):175101
    [53] PENG F Z, FU H S, CAO J B, et al. Quadrupolar pattern of the asymmetric guide-field reconnection[J]. J. Geophys. Res., 2017, 122(6):6349-6356
    [54] BURCH J L, PHAN T D. Magnetic reconnection at the dayside magnetopause:Advances with MMS[J]. Geophys. Res. Lett., 2016, 43(16):8327-8338
    [55] PHAN T D, EASTWOOD J P, CASSAK P A, et al. MMS observations of electron-scale filamentary currents in the reconnection exhaust and near the X line[J]. Geophys. Res. Lett., 2016, 43(12):6060-6069
    [56] ERGUN R E, CHEN L J, WILDER F D, et al. Drift waves, intense parallel electric fields, and turbulence associated with asymmetric magnetic reconnection at the magnetopause[J]. Geophys. Res. Lett., 2017, 44(7):2978-2986
    [57] DRAKE J F, SWISDAK M, SCHOEFFLER K M, et al. Formation of secondary islands during magnetic reconnection[J]. Geophys. Res. Lett., 2006, 33(13):L13105. DOI: 10.1029/2006GL025957
    [58] TREUMANN R A, BAUMJOHANN W. Collisionless magnetic reconnection in space plasmas[J]. Front. Phys., 2013, 1:31
  • 加载中
计量
  • 文章访问数:  1243
  • HTML全文浏览量:  134
  • PDF下载量:  3531
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-03
  • 修回日期:  2017-11-24
  • 刊出日期:  2018-03-15

目录

    /

    返回文章
    返回