留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冷锋期间武汉MST雷达低平流层回波异常现象

潘震豪 周晓明 陈罡 燕春晓 陈飞龙 王莹

潘震豪, 周晓明, 陈罡, 燕春晓, 陈飞龙, 王莹. 冷锋期间武汉MST雷达低平流层回波异常现象[J]. 空间科学学报, 2018, 38(4): 492-501. doi: 10.11728/cjss2018.04.492
引用本文: 潘震豪, 周晓明, 陈罡, 燕春晓, 陈飞龙, 王莹. 冷锋期间武汉MST雷达低平流层回波异常现象[J]. 空间科学学报, 2018, 38(4): 492-501. doi: 10.11728/cjss2018.04.492
PAN Zhenhao, ZHOU Xiaoming, CHEN Gang, YAN Chunxiao, CHEN Feilong, WANG Ying. Abnormal Echoes in Lower Stratosphere Observed by Wuhan MST Radar during a Cold front Event[J]. Chinese Journal of Space Science, 2018, 38(4): 492-501. doi: 10.11728/cjss2018.04.492
Citation: PAN Zhenhao, ZHOU Xiaoming, CHEN Gang, YAN Chunxiao, CHEN Feilong, WANG Ying. Abnormal Echoes in Lower Stratosphere Observed by Wuhan MST Radar during a Cold front Event[J]. Chinese Journal of Space Science, 2018, 38(4): 492-501. doi: 10.11728/cjss2018.04.492

冷锋期间武汉MST雷达低平流层回波异常现象

doi: 10.11728/cjss2018.04.492
基金项目: 

国家自然科学基金项目资助(41474132)

详细信息
    作者简介:

    陈罡,E-mail:g.chen@whu.edu.cn

  • 中图分类号: P356

Abnormal Echoes in Lower Stratosphere Observed by Wuhan MST Radar during a Cold front Event

  • 摘要: 武汉MST雷达是中国子午工程建设的两台中高层大气无线电探测雷达之一.该雷达探测频率在VHF频段,雷达回波在低平流层和对流层上部具有角谱特性,可为研究大气动态稳定性提供有效技术手段.本文利用武汉MST雷达2016年4月17日冷锋活动期间及平静天气的角谱实验数据,从雷达回波特性变化、风场空间分布、湍流生成机制以及内重力波影响四个方面分析并解释了MST雷达对流层顶上部区域出现持续异常强回波带的成因.分析结果表明,对流层冷锋的强对流作用诱发内重力波,内重力波向上传播至低平流层后受增强的剪切急流影响发生耗散甚至破碎,激励了长时间跨度的K-H不稳定性,进而导致水平反射层结构发生扰动生成湍流,使得雷达回波结构发生变化.

     

  • [1] GAGE K S, GREEN J L. Evidence for specular reflection from monostatic VHF radar observations of the stratosphere[J]. Radio Sci., 1978, 13(6):991-1001
    [2] RÖTTGER J, LIU C H. Partial reflection and scattering of VHF radar signals from the clear atmosphere[J]. Geophys. Res. Lett., 1978, 5(5):357-360
    [3] TSUDA T, VANZANDT T E, SAITO H. Zenith-angle dependence of VHF specular reflection echoes in the lower atmosphere[J]. J. atmos. Terr. Phys., 1997, 59(7):761-775
    [4] HU Xiong, ZENG Zhen, ZHANG Dongya, et al. Observations of the mesosphere and lower thermosphere angular spectrum with an MF radar at Wuhan[J]. Chin. J. Space Sci., 2003, 23(4):256-261(胡雄, 曾桢, 张冬娅,等. 武汉中层、低热层大气角谱中频雷达观测[J]. 空间科学学报, 2003, 23(4):256-261)
    [5] JAIN A R, RAO Y J, RAO P B. Aspect sensitivity of the received radar backscatter at VHF:Preliminary observations using the Indian MST radar[J]. Radio Sci., 1997, 32(3):1249-1260
    [6] ZHANG Peichang, DU Bingyu, DAI Tiepi. Radar Meteorology[M]. Beijing:China Meteorological Press, 2001(张培昌, 杜秉玉, 戴铁丕. 雷达气象学[M]. 北京:气象出版社, 2001)
    [7] HOCKING W K, FUKAO S, YAMAMOTO M, et al. Viscosity waves and thermal-conduction waves as a cause of "specular" reflectors in radar studies of the atmosphere[J]. Radio Sci., 1991, 26(5):1281-1303
    [8] LUCE H, CROCHET M, DALAUDIER F, et al. Interpretation of VHF ST radar vertical echoes from in situ temperature sheet observations[J]. Radio Sci., 1995, 30(4):1003-1025
    [9] GAGE K S, BALSLEY B B. On the scattering and reflection mechanisms contributing to clear air radar echoes from the troposphere, stratosphere, and mesophere[J]. Radio Sci., 1980, 15(2):243-257
    [10] DOVIAK R J, ZRNIC D S. Reflection and scatter formula for anisotropically turbulent air[J]. Radio Sci., 1984, 19(1):325-336
    [11] KUMAR K K. VHF radar observations of convectively generated gravity waves:Some new insights[J]. Geophys. Res. Lett., 2006, 330(1):311-330
    [12] LUCE H, NISHI N, CACCIA J L, et al. Kelvin-Helmholtz billows generated at a cirrus cloud base within a tropopause fold/upper-level frontal system[J]. Geophys. Res. Lett., 2012, 39(4):4807
    [13] YAMAMOTO M K, MASATOMO F, TAKESHI H, et al. Correction to "Kelvin-Helmholtz instability around the tropical tropopause observed with the Equatorial Atmosphere Radar"[J]. Geophys. Res. Lett., 2003, 30(9):319-338
    [14] DAS S S, PATRA A K, NARAYANA R D. VHF radar echoes in the vicinity of tropopause during the passage of tropical cyclone:First observations from the Gadanki MST radar[J]. J. Geophys. Res., 2008, 16(113):D09113
    [15] DAS S S, KUMAR K K, UMA K N, et al. Modulation of thermal structure in the Upper Troposphere and Lower Stratosphere (UTLS) region by inertia gravity waves:a case study inferred from simultaneous MST radar and GPS sonde observations[J]. Indian J. Radio Space Phys., 2014, 43(1):11-23
    [16] WORTHINGTON R M, PALMER R D, FUKAO S. An investigation of tilted aspect-sensitive scatterers in the lower atmosphere using the MU and Aberystwyth VHF radars[J]. Radio Sci., 1999, 34(2):413-426
    [17] WORTHINGTON R M, PALMER R D, FUKAO S. Complete maps of the aspect sensitivity of VHF atmospheric radar echoes[J]. Ann. Geophys, 1999, 17:1116-1119
    [18] HUAMAN M M, BALSLEY B B. Long-term-mean aspect sensitivity of PMSE determined from Poker Flat MST radar data[J]. Geophys. Res. Lett., 1998, 25(25):947-950
    [19] SWARNALINGAM N, HOCKING W K, DRUMMOND J R. Long-term aspect-sensitivity measurements of polar mesosphere summer echoes (PMSE) at Resolute Bay using a 51.5MHz VHF radar[J]. J. atmos. Terr. Phys., 2011, 73(9):957-964
    [20] SMIRNOVA M, BELOVA E, KIRKWOOD S. Aspect sensitivity of polar mesosphere summer echoes based on ESRAD MST radar measurements in Kiruna, Sweden in 1997-2010[J]. Ann. Geophys, 2012, 30(3):457-465
    [21] CHEN G, CUI X, CHEN F L, et al. MST Radars of Chinese Meridian Project:System Description and Atmospheric Wind Measurement[J]. IEEE Trans. Geosci. Remote Sens., 2016, 54(8):4513-4523
    [22] DAS S S, VENKAT R M, UMA K N, et al. Stratospheric intrusion into the troposphere during the tropical cyclone Nilam (2012)[J]. Q. J. R. Meteorol. Soc., 2016, 142(698):2168-2179
    [23] LUCE H, FUKAO S, DALAUDIER F, et al. Strong Mixing Events Observed near the Tropopause with the MU Radar and High-Resolution Balloon Techniques[J]. J. Atmos. Sci., 2002, 59(20):2885-2896
    [24] GHOSH A K, DAS S S, PATRA A K, et al. Aspect sensitivity in the VHF radar backscatters studied using simultaneous observations of Gadanki MST radar and GPS sonde[J]. Ann. Geophys., 2004, 22(11):4013-4023
    [25] BROWNING K A, WATKINS C D. Observations of Clear Air Turbulence by High Power Radar[J]. Nature, 1970, 227(5255):260-263
    [26] WORTHINGTON R M, THOMAS L. Long-period unstable gravity-waves and associated VHF radar echoes[J]. Annales Geophysicae, 1997, 15(6):813-822
    [27] FRITTS D C, ALEXANDER M J. Gravity wave dynamics and effects in the middle atmosphere[J]. Rev. Geophys., 2003, 41(1), 1003, doi: 10.1029/2001RG000106
    [28] LUCE H, HASSENPFLUG G, Yamamoto M, et al. High-Resolution Observations with MU Radar of a KH Instability Triggered by an Inertia Gravity Wave in the Upper Part of a Jet Stream[J]. J. Atmos. Sci., 2008, 65(5):1711-1718
    [29] FRITTS D C, RASTOGI P K. Convective and dynamical instabilities due to gravity wave motions in the lower and middle atmosphere:Theory and observations[J]. Radio Sci., 2016, 20(6):1247-1277
    [30] FUJIWARA M, YAMAMOTO M K, HASHIGUCHI H, et al. Turbulence at the tropopause due to breaking Kelvin waves observed by the Equatorial Atmosphere Radar[J]. Geophys. Res. Lett., 2003, 30(4):20-21
    [31] MEGA T, YAMAMOTO M K, LUCE H, et al. Turbulence generation by Kelvin-Helmholtz instability in the tropical tropopause layer observed with a 47MHz range imaging radar[J]. J. Geophys. Res. Atmos., 2010, 115(D18):D118115
    [32] PAVELIN E, WHITEWAY J A, VAUGHAN G. Observation of gravity wave generation and breaking in the lowermost stratosphere[J]. J. Geophys. Res., 20011, 06(D6), 5173-5179
    [33] ZHANG S D, YI F. A statistical study of gravity waves from radiosonde observations at Wuhan (30°N, 114°E) China[J]. Ann. Geophys., 2005, 23(3):665-673
    [34] QING H, ZHOU C, ZHAO Z, et al. A statistical study of inertia gravity waves in the troposphere based on the measurements of Wuhan Atmosphere Radio Exploration (WARE) radar[J]. J. Geophys. Res., 2014, 119(7):3701-3714
    [35] HU X, LIU A Z, GARDNER C S, et al. Characteristics of quasi-monochromatic gravity waves observed with Na lidar in the mesopause region at Starfire Optical Range, NM[J]. Geophys. Res. Lett., 2002, 29(24):22-1-22-4
    [36] YU Y, YAN Z, HICKEY M P. Lower thermospheric response to atmospheric gravity waves induced by the 2011 Tohoku tsunami[J]. J. Geophy. Res. Space Physics, 2015, 120(6):5062-5075
    [37] ZHANG Shaodong, YI Fan. Breaking of a upward propagating gravity wave packet[J]. Chin. J. Geophys., 1999, 42(3):289-295(张绍东, 易帆. 重力波波包在向上传播过程中的破碎[J]. 地球物理学报, 1999, 42(3):289-295)
    [38] PAVELIN E, WHITEWAY J A. Gravity wave interactions around the jet stream[J]. Geophy. Res. Lett, 2002, 29(29):20-21
    [39] MA Lanmeng, ZHANG Shaodong, YI Fan. Radiosonde observations of lower atmospheric gravity wave momentum flux spectra at a single midlatitude station[J]. Chin. J. Geophys., 2012, 55(10):3194-3202(马兰梦, 张绍东, 易帆. 中纬低层大气重力波动量通量谱的探空观测[J]. 地球物理学报, 2012, 55(10):3194-3202)
    [40] FRITTS D C, ARENDT S, ANDREASSEN Ø. The vorticity dynamics of instability and turbulence in a breaking internal gravity wave[J]. Earth Planets Space, 1999, 51(7/8):457-473
  • 加载中
计量
  • 文章访问数:  1115
  • HTML全文浏览量:  69
  • PDF下载量:  1674
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-28
  • 修回日期:  2017-11-29
  • 刊出日期:  2018-07-15

目录

    /

    返回文章
    返回