留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微重力下层流扩散火焰碳烟生成过程

远洪亮 孔文俊

远洪亮, 孔文俊. 微重力下层流扩散火焰碳烟生成过程[J]. 空间科学学报, 2018, 38(4): 517-523. doi: 10.11728/cjss2018.04.517
引用本文: 远洪亮, 孔文俊. 微重力下层流扩散火焰碳烟生成过程[J]. 空间科学学报, 2018, 38(4): 517-523. doi: 10.11728/cjss2018.04.517
YUAN Hongliang, KONG Wenjun. Soot Formation in Laminar Diffusion Flame under Microgravityormalsize[J]. Chinese Journal of Space Science, 2018, 38(4): 517-523. doi: 10.11728/cjss2018.04.517
Citation: YUAN Hongliang, KONG Wenjun. Soot Formation in Laminar Diffusion Flame under Microgravityormalsize[J]. Chinese Journal of Space Science, 2018, 38(4): 517-523. doi: 10.11728/cjss2018.04.517

微重力下层流扩散火焰碳烟生成过程

doi: 10.11728/cjss2018.04.517
基金项目: 

国家自然科学基金项目(U1738113)和国家重点基础研究发展计划项目(2014CB239603)共同资助

详细信息
    作者简介:

    孔文俊,E-mail:wjkong@iet.cn

  • 中图分类号: P527

Soot Formation in Laminar Diffusion Flame under Microgravityormalsize

  • 摘要: 根据详细的燃料氧化机理和多环芳烃生成机理,对乙烯同轴射流火焰在重力变化下碳烟生成情况进行计算.认为碳烟的初始成核是由两个较大的多环芳烃(PAH)二聚而成,碳烟的表面生长机理为HACA,凝结过程主要考虑PAH与碳烟的碰撞吸附,碳烟生长和氧化过程耦合在分节气溶胶模型中.计算结果表明,微重力条件下乙烯同轴射流火焰峰值温度下降230K,碳烟浓度显著增加,且浓度峰值在微重力条件下更加偏离中心线.分析重力变化对碳烟前驱体乙炔和多环芳烃的分布、初始成核速率、表面生长速率及凝结速率的影响.结果表明碳烟在中心轴线上主要是通过凝结过程生成的,且微重力条件下PAH在碳烟表面的凝结更加重要.由于微重力条件下停留时间更长,导致碳烟直径更大.

     

  • [1] WALSH K T, FIELDING J, SMOOKE M D, et al. Experimental and computational study of temperature, species, and soot in buoyant and non-buoyant coflow laminar diffusion flames[J]. Proc. Comb. Inst., 2000, 28(2):1973-1979
    [2] FUJITA O, ITO K. Observation of soot agglomeration process with aid of thermophoretic force in a microgravity jet diffusion flame[J]. Exp. Therm Fluid Sci., 2002, 26(2-4):305-311
    [3] KONG Wenjun, LIU Fengshan. Effects of gravity on soot formation in a coflow laminar methane/air diffusion flame[J]. Microg. Sci. Technol., 2010, 22(2):205-214
    [4] MA Bin, CAO Su, GIASSI D, et al. An experimental and computational study of soot formation in a coflow jet flame under microgravity and normal gravity[J]. Proc. Comb. Inst., 2015, 35(1):839-846
    [5] ZHANG Q, GUO H, LIU F, et al. Modeling of soot aggregate formation and size distribution in a laminar ethylene/air coflow diffusion flame with detailed PAH chemistry and an advanced sectional aerosol dynamics model[J]. Proc. Comb. Inst., 2009, 32(1):761-768
    [6] ZHANG Q, THOMSON M J, GUO H, et al. A numerical study of soot aggregate formation in a laminar coflow diffusion flame[J]. Comb. Flame, 2009, 156(3):697-705
    [7] CONSALVI J L, LIU Fengshan, KASHIF M, et al. Numerical study of soot formation in laminar coflow methane/air diffusion flames doped by n-heptane/toluene and iso-octane/toluene blends[J]. Comb. Flame, 2017, 180:167-174
    [8] SAFFARIPOUR M, VESHKINI A, KHOLGHY M, et al. Experimental investigation and detailed modeling of soot aggregate formation and size distribution in laminar coflow diffusion flames of Jet A-1, a synthetic kerosene, and n-decane[J]. Comb. Flame, 2014, 161(3):848-863
    [9] SAFFARIPOUR M, ZABETI P, DWORKIN S B, et al. A numerical and experimental study of a laminar sooting coflow Jet-A1 diffusion flame[J]. Proc. Comb. Inst., 2011, 33(1):601-608
    [10] LIU Fengshan, SMALLWOOD G J, GÜLDER Ö L. Band lumping strategy for radiation heat transfer calculations using a narrowband model[J]. J. Thermophys. Heat Trans., 2000, 14(2):278-281
    [11] WANG Yu, RAJ A, CHUNG S H. A PAH growth mechanism and synergistic effect on PAH formation in counterflow diffusion flames[J]. Comb. Flame, 2013, 160(9):1667-1676
  • 加载中
计量
  • 文章访问数:  1016
  • HTML全文浏览量:  63
  • PDF下载量:  1682
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-22
  • 修回日期:  2018-05-17
  • 刊出日期:  2018-07-15

目录

    /

    返回文章
    返回