留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微重力条件下红外材料的空间生长

焦翠灵 王仍 陆液 李向阳

焦翠灵, 王仍, 陆液, 李向阳. 微重力条件下红外材料的空间生长[J]. 空间科学学报, 2018, 38(4): 530-538. doi: 10.11728/cjss2018.04.530
引用本文: 焦翠灵, 王仍, 陆液, 李向阳. 微重力条件下红外材料的空间生长[J]. 空间科学学报, 2018, 38(4): 530-538. doi: 10.11728/cjss2018.04.530
JIAO Cuiling, WANG Reng, LU Ye, LI Xiangyang. Infrared Materials Growth under Microgravity in Spaceormalsize[J]. Journal of Space Science, 2018, 38(4): 530-538. doi: 10.11728/cjss2018.04.530
Citation: JIAO Cuiling, WANG Reng, LU Ye, LI Xiangyang. Infrared Materials Growth under Microgravity in Spaceormalsize[J]. Journal of Space Science, 2018, 38(4): 530-538. doi: 10.11728/cjss2018.04.530

微重力条件下红外材料的空间生长

doi: 10.11728/cjss2018.04.530
基金项目: 

中国载人空间站工程(TGJZ800-2-RW024),国家自然科学基金项目(61106097,61204134,11304335)和中国科学院创新专项(CX-26)共同资助

详细信息
    作者简介:

    焦翠灵,E-mail:jclx_1112@163.com

  • 中图分类号: V524

Infrared Materials Growth under Microgravity in Spaceormalsize

  • 摘要: 根据近年红外材料在空间生长的研究概况,分析了涵盖熔体、气相、液相外延和分子束外延等生长方法及各个方法生长红外材料的基本原理,在地面生长遇到的问题,以及在空间微重力环境中进行红外材料生长的优势.同时基于中国利用熔体法在天宫二号上已经进行的ZnTe:Cu晶体的空间生长科学实验及地基实验结果,通过对空间和地面实验结果进行对比,提出了在超高真空环境下,利用分子束外延方式生长高性能、大尺寸红外材料的可能性,以及未来在空间微重力条件下进行红外材料生长的研究方向及具体应用.

     

  • [1] WALTER H U. Fluid Sciences and Materials Science in Space[M]. Beijing:Science and Technology of China Press, 1991:251(瓦尔特H U. 空间流体科学与空间材料科学[M]. 北京:中国科学技术出版社, 1991:251)
    [2] CRÖLL A, KAISER T, SCHWEIZER M, et al. Floating-zone and floating-solution-zone growth of GaSb under microgravity[J]. J. Cryst. Growth, 1998, 191(3):365-376
    [3] YEE J F, LIN M C, SARMA K, et al. The influence of gravity on crystal defect formation in InSb-GaSb alloys[J]. J. Cryst. Growth, 1975, 30(2):185-192
    [4] WALTER H U. Generation and propagation of defects in indium antimonide[J]. J. Electrochem. Soc., 1977, 124(2):250-258
    [5] KHASHIMOV F R. Structural and physical characteristics of InSb single crystals grown under Near-Zero gravity conditions[C]//Proceeding of 3rd European Symposium on Materials Science in Space. Grenoble:European Space Agency, 1979:9-15
    [6] GILLIES D C, LEHOCZKY S L, SZOFRAN F R, et al. Bulk growth of Ⅱ-V!I crystals in the microgravity environment of USML-1[C]//Proceedings of SPIE Volume 2021, Growth and Characterization of Materials for Infrared Detectors. San Diego, CA, United States:SPIE, 1992:10-21
    [7] CRÖLL A, TEGETMEIER A, NAGEL G, et al. Floating-zone growth of GaAs under microgravity during the D2-mission[J]. Cryst. Growth Tech., 1994, 29(3):335-342
    [8] HERRMANN F M, MÜLLER G. Growth of 20mm diameter GaAs crystals by the floating-zone technique with controlled As-vapour pressure under microgravity[J]. J. Cryst. Growth, 1995, 156(4):350-360
    [9] SYLLA L, FAULER A, FIEDERLE M, et al. Dewetting during the crystal growth of (Cd, Zn)Te:in under microgravity[J]. IEEE Trans. Nucl. Sci., 2009, 56(4):1747-1751
    [10] BALINT S, EPURE S. Non-lyapunov type stability in a model of the Dewetted Bridgman crystal growth under zero gravity conditions[J]. Microgr. Sci. Tech., 2011, 23(S1):49-58
    [11] YECKEL A, DERBY J J. Existence, stability, and nonlinear dynamics of detached Bridgman growth states under zero gravity[J]. J. Cryst. Growth, 2011, 314(1):310-323
    [12] LARSON D J JR, DUDLEY M, CHUNG H, et al. Characterization of Zn-alloyed CdTe compound semiconductors processed in microgravity on USML-1 and USML-2[J]. Adv. Space Res., 1998, 22(8):1179-l188
    [13] MAMIYA M, NGAI H, CASTILLO M, et al. The analysis of CdTe solidification in absence of thermal convection via short-duration microgravity[J]. J. Cryst. Growth, 2006, 295(2):209-216
    [14] MOTAKEF S, BECLA P, SWIDER S, et al. Growth of CdZnTe by the detached Bridgman method[C]//Proceedings of SPIE Volume 8507, Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XIV. San Diego, California:SPIE, 2012
    [15] BORISENKO E B, KOLESNIKOV N N, SENCHENKOV AS, et al. Crystal growth of Cd1-xZn_xTe by the traveling heater method in microgravity onboard of Foton-M4 spacecraft[J]. J. Cryst. Growth, 2017, 457:262-264
    [16] WANG Reng, LI Xiangyang, LU Ye, et al. Research advances in vapor phase growth of CdZnTe under microgravity[J]. Infrared, 2013, 34(11):8-12(王仍, 李向阳, 陆液, 等. 空间微重力汽相生长CdZnTe的研究进展[J]. 红外, 2013, 34(11):8-12)
    [17] LU Ye, WANG Reng, DU Yunchen, et al. Growth of ZnTe crystal in microgravity on Tiangong-2 spaceshipormalsize[J]. Chin. J. Space Sci., 2018, 38(2):234-238(陆液, 王仍, 杜云辰, 等.天宫二号碲化锌晶体生长[J]空间科学学报, 2018, 38(2):234-238)
    [18] SYLLA L, DUFFAR T. Numerical simulation of temperature and pressure fields in CdTe growth experiment in the Material Science Laboratory (MSL) onboard the International Space Station in relation to dewetting[J]. J. Cryst. Growth, 2007, 303(1):187-192
    [19] LYUBIMOVA T P, LYUBIMOV D V, IVANTSOV A O. The influence of vibrations on melt flows during detached Bridgman crystal growth[J]. J. Cryst. Growth, 2014, 385:77-81
    [20] STELIAN C, DUFFAR F. Numerical modeling of CdTe crystallization fromTe solution under terrestrial and microgravity conditions[J]. J. Cryst. Growth, 2014, 400:67-75
    [21] STELIAN C, DUFFAR T. In fluence of rotating magnetic fields on THM growth of CdZnTe crystals under microgravity and ground conditions[J]. J. Cryst. Growth, 2015, 429:19-26
    [22] WU Shunfa. Meniscus Shape Calculation and Stability Analysis of CdZnTe Cryatals Detachment Growth[D]. Chongqing:Chongqing University, 2008(伍顺发. CdZnTe晶体分离结晶界面形状计算及稳定性分析[D]. 重庆:重庆大学, 2008)
    [23] LAN P, ZHANG Q Z. Global simulation of CdZnTe Crystal growth by detached solidification method[J]. Microg. Sci. Tech., 2010, 22(2):179-183
    [24] WIEDEMEIER H, KLAESSIG F C, IRENE E A, et al. Crystal growth and transport rates of GeSe and GeTe in micro-gravity environment[J]. J. Cryst. Growth, 1973, 31:36-43
    [25] WIEDEMEIER H, GE Y R, HUTCHINS M A, et al. Growth of Hg1-xCdxTe epitaxial layers on (100) CdTe by chemical vapor transport under normal and reduced gravity conditions[J]. J. Cryst. Growth, 1995, 146(1-4):610-618
    [26] PALOSZ W, GRASZA K, DUROSE K, et al. The effect of the wall contact and post-growth cool-down on defects in CdTe crystals grown by ‘contactless’ physical vapour transport[J]. J. Cryst. Growth, 2003, 254(3-4):316-328
    [27] JIANG Jinshang. Space Science and Application[M]. Beijing:Science Press. 2001(姜景山. 空间科学与应用[M]. 北京:科学出版社, 2001)
    [28] FIEDERLE M, BENZ K W, CRÖLL A, et al. Deposition of CdTe films under microgravity:Foton M3 mission[J]. Cryst. Res. Technol., 2009, 44(10):1059-1066
    [29] WANG Reng, JIAO Cuiling, XU Guoqing, et al. Growth of Au-doped Hg1-xCdxTe epitaxial crystals and its Raman spectrum[J]. J. Infrared Millim., 2015, 34(4):432-436(王仍, 焦翠灵, 徐国庆, 等. Au掺杂碲镉汞气相外延生长及电学性能[J]. 红外与毫米波学报, 2015, 34(4):432-436)
    [30] ZHAO Jianhua, WANG Wenkui. Research progress in the crystal from vapor phase in space[J]. Prog. Phys., 1998, 18(3):283-307(赵建华, 王文魁.微重力条件下材料气相生长研究进展[J]. 物理学进展, 1998, 18(3):283-307)
    [31] KODAMA S, NAKAJIMA S, SUZUKI K, et al. Compositional variation in AlGaAs crystals grown by LPE under microgravity and terrestrial conditions[J]. J. Cryst. Growth, 1998, 194(2):166-172
    [32] IGNATIEV A, FREUNDLICH A, PCHELYAKOV O, et al. Molecular beam epitaxy in the ultra-vacuum of space:present and near future[M]//HENINI M. Molecular Beam Epitaxy:From Research to Mass. Amsterdam:Elsevier, 2013:47-53
  • 加载中
计量
  • 文章访问数:  633
  • HTML全文浏览量:  14
  • PDF下载量:  321
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-29
  • 修回日期:  2018-05-28
  • 刊出日期:  2018-07-15

目录

    /

    返回文章
    返回