留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TanSat Mission Achievements: from Scientific Driving to Preliminary Observations

LIU Yi WANG Jing YAO Lu CHEN Xi CAI Zhaonan YANG Dongxu YIN Zengshan GU Songyan TIAN Longfei LU Naimeng LÜ Daren

LIU Yi, WANG Jing, YAO Lu, CHEN Xi, CAI Zhaonan, YANG Dongxu, YIN Zengshan, GU Songyan, TIAN Longfei, LU Naimeng, LÜ Daren. TanSat Mission Achievements: from Scientific Driving to Preliminary Observations[J]. 空间科学学报, 2018, 38(5): 627-639. doi: 10.11728/cjss2018.05.627
引用本文: LIU Yi, WANG Jing, YAO Lu, CHEN Xi, CAI Zhaonan, YANG Dongxu, YIN Zengshan, GU Songyan, TIAN Longfei, LU Naimeng, LÜ Daren. TanSat Mission Achievements: from Scientific Driving to Preliminary Observations[J]. 空间科学学报, 2018, 38(5): 627-639. doi: 10.11728/cjss2018.05.627
LIU Yi, WANG Jing, YAO Lu, CHEN Xi, CAI Zhaonan, YANG Dongxu, YIN Zengshan, GU Songyan, TIAN Longfei, LU Naimeng, LÜ Daren. TanSat Mission Achievements: from Scientific Driving to Preliminary Observations[J]. Chinese Journal of Space Science, 2018, 38(5): 627-639. doi: 10.11728/cjss2018.05.627
Citation: LIU Yi, WANG Jing, YAO Lu, CHEN Xi, CAI Zhaonan, YANG Dongxu, YIN Zengshan, GU Songyan, TIAN Longfei, LU Naimeng, LÜ Daren. TanSat Mission Achievements: from Scientific Driving to Preliminary Observations[J]. Chinese Journal of Space Science, 2018, 38(5): 627-639. doi: 10.11728/cjss2018.05.627

TanSat Mission Achievements: from Scientific Driving to Preliminary Observations

doi: 10.11728/cjss2018.05.627
基金项目: 

Supported by National Key R&D Program of China (2016YFA0600203, 2017YFB0504000), the National High-tech Research and Development Program (2011AA12A104), External Cooperation Program of the Chinese Academy of Sciences (GJHZ1507)

详细信息
    作者简介:

    YANG Dongxu,yangdx@mail.iap.ac.cn

TanSat Mission Achievements: from Scientific Driving to Preliminary Observations

Funds: 

Supported by National Key R&D Program of China (2016YFA0600203, 2017YFB0504000), the National High-tech Research and Development Program (2011AA12A104), External Cooperation Program of the Chinese Academy of Sciences (GJHZ1507)

More Information
    Author Bio:

    YANG Dongxu,yangdx@mail.iap.ac.cn

  • 摘要: The Chinese global carbon dioxide monitoring satellite (TanSat) was successfully launched in December 2016 and has completed its on-orbit tests and calibration. TanSat aims to measure the atmospheric Carbon Dioxide column-averaged dry air mole fractions (XCO2) with a precision of 4 ppm at the regional scale, and further to derive the CO2 global and regional fluxes. Progress toward these objectives is reviewed and the first scientific results from TanSat measurements are presented. During the design phase, Observation System Simulation Experiments (OSSE) on TanSat measurements performed prior to launch measurements using a nadir and a glint alternative mode when considering the balance of stable measurements and reduces the flux uncertainty (64%). The constellation measurements of two satellites indicate an extra 10% improvement in flux inversion if the satellite measurements have no bias and similar precision. The TanSat on-orbit test indicates that the instrument is stable and beginning to produce XCO2 products. The preliminary TanSat measurements have been validated with Total Carbon Column Observing Network (TCCON) measurements and have inter-compared with OCO-2 measurements in an overlap measurement.

     

  • [1] BOVENSMANN H, BURROWS J P, BUCHWITZ M, et al. Sciamachy:mission objectives and measurement modes[J]. J. Atmos. Sci., 1999, 56:127-150
    [2] BÖSCH H, TOON G C, SEN B, et al. Space-based nearinfrared CO2 measurements:Testing the orbiting carbon observatory retrieval algorithm and validation concept using sciamachy observations over park falls, wisconsin[J]. J. Geophys. Res.:Atmos., 2006, 111(D23):5495-5513
    [3] HEYMANN J, REUTER M, HILKER M, et al. Consistent satellite XCO2 retrievals from sciamachy and gosat using the besd algorithm[J]. Atmos. Meas. Techn., 2015, 8:2961-2980
    [4] YOKOTA T, YOSHIDA Y, EGUCHI N, et al. Global concentrations of CO2 and ch4 retrieved from gosat:first preliminary results[J]. Solar, 2009, 5:160-163
    [5] KUZE A, TAYLOR T E, KATAOKA F, et al. Long-term vicarious calibration of gosat short-wave sensors:techniques for error reduction and new estimates of radiometric degradation factors[J]. IEEE Trans. Geosci. Remote Sens., 2014, 52:3991-4004
    [6] YOSHIDA Y, KIKUCHI N, MORINO I, et al. Improvement of the retrieval algorithm for gosat swir XCO2 and XCH4 and their validation using tccon data[J]. Atmos. Measur. Techniq., 2013, 6:1533-1547
    [7] ELDERING A, AMP, APOS, et al. The orbiting carbon observatory-2:First 18 months of science data products[J]. Atmos. Measur. Techniq. Disc., 2016:1-30
    [8] CRISP D, POLLOCK H R, ROSENBERG R, et al. The on-orbit performance of the orbiting carbon observatory-2(OCO-2) instrument and its radiometrically calibrated products[J]. Atmos. Measur. Techniq., 2017, 10:59-81
    [9] BOESCH H, BAKER D, CONNOR B, et al. Global characterization of CO2 column retrievals from shortwaveinfrared satellite observations of the orbiting carbon observatory-2 mission[J]. Remote Sens., 2011, 3:270-304
    [10] CHEVALLIER F, ENGELEN R J, CAROUGE C, et al. Airs-based versus flask-based estimation of carbon surface fluxes[J]. J. Geophys. Res.-Atmos., 2009, 114:1-9
    [11] CHEVALLIER F, FENG L, BOESCH H, et al. On the impact of transport model errors for the estimation of CO2 surface fluxes from gosat observations[J]. Geophys. Res. Lett., 2010, 37(21):21803
    [12] FENG L, PALMER P I, BOESCH H, et al. Estimating surface CO2 fluxes from space-borne CO2 dry air mole fraction observations using an ensemble kalman filter[J]. Atmos. Chem. Phys., 2009, 9:2619-2633
    [13] CHEVALLIER F, BREON F M, RAYNER P J. Contribution of the orbiting carbon observatory to the estimation of CO2 sources and sinks:Theoretical study in a variational data assimilation framework[J]. J. Geophys. Res.:Atmos., 2007, 112. DOI: org/10.1029/2006JD007375
    [14] LIU J J, BOWMAN K W, LEE M, et al. Carbon monitoring system flux estimation and attribution:impact of acos-gosat x-CO2 sampling on the inference of terrestrial biospheric sources and sinks[J]. Tellus Series B-Chem. and Phys. Meteor., 2014, 66(33):78-82
    [15] FENG L, PALMER P I, PARKER R J, et al. Estimates of european uptake of CO2 inferred from gosat XCO2 retrievals:sensitivity to measurement bias inside and outside europe[J]. Atmos. Chem. and Phys., 2016, 16:1289-1302
    [16] BAKER D F, BOESCH H, DONEY S C, et al. Carbon source/sink information provided by column CO2 measurements from the orbiting carbon observatory[J]. Atmos. Chem. Phys., 2010, 10:4145-4165
    [17] LI Z G, LIN C, LI C L, et al. Prelaunch spectral calibration of a carbon dioxide spectrometer[J]. Measur. Sci. Technol., 2017, 28(6). DOI: 10.1088/1361-6501/aa6507
    [18] ZHANG H, ZHENG Y Q, LIN C, et al. Laboratory spectral calibration of tansat and the influence of multiplex merging of pixels[J]. Int. J. Remote Sens., 2017, 38:3800-3816
    [19] GEDDES A, BOSCH H. Tropospheric aerosol profile information from high-resolution oxygen a-band measurements from space[J]. Atmos. Measur. Techniq., 2015, 8:859-874
    [20] LIN C, LI C, WANG L, et al. Preflight spectral calibration of hyperspectral carbon dioxide spectrometer of tansat[J]. Opt. Prec. Eng., 2017, 25:2064-2075
    [21] LIU Y, CAI Z, YANG D, et al. Optimization of the instrument configuration for tansat co2spectrometer[J]. Chin. Sci. Bull. 2013, 58:2787
    [22] WANG Q, YANG Z D, BI Y M. Spectral parameters and signal-to-noise ratio requirement for tansat hyper spectral sensor to measure atmospheric CO2[R]//Remote Sensing of the Atmosphere, Clouds, and Precipitation V. 2014
    [23] BUTZ A, HASEKAMP O P, FRANKENBERG C, et al. Retrievals of atmospheric co2 from simulated space-borne measurements of backscattered near-infrared sunlight:accounting for aerosol effects[J]. Appl. Opt., 2009, 48:3322-3336
    [24] GUERLET S, BUTZ A, SCHEPERS D, et al. Impact of aerosol and thin cirrus on retrieving and validating XCO2 from gosat shortwave infrared measurements[J]. J. Geophys. Res.:Atmos., 2013, 118:4887-4905
    [25] AJIRO M, KAWAZOE F, YOKOTA T. An update on gosat standard products at five and a half years after the launch[R]//Earth Observing Missions and Sensors:Development, Implementation, and Characterization iii, 2014
    [26] ISHIDA H, NAKJIMA T Y, YOKOTA T, et al. Investigation of gosat tanso-cai cloud screening ability through an intersatellite comparison[J]. J. Appl. Meteor. Climatol., 2011, 50:1571-1586
    [27] TAYLOR T E, O'DELL C W, O'BRIEN D M, et al. Comparison of cloud-screening methods applied to gosat nearinfrared spectra[J]. IEEE Trans. Geosci. Remote Sens., 2012, 50:295-309
    [28] ZHANG J Q, SHAO J B, YAN C X. Cloud and aerosol polarimetric imager[R]//Selected Papers from Conferences of the Photoelectronic Technology Committee of the Chinese Society of Astronautics:Optical Imaging, Remote Sensing, and Laser-matter Interaction 2013, 2014
    [29] SHI G, LI C, REN T. Sensitivity analysis of single-angle polarization reflectance observed by satellite[J]. Chin. Sci. Bull., 2014, 59:1519-1528
    [30] SHI G M, LI C C, REN T, et al. Retrieval of atmospheric aerosol and surface properties over land using satellite observations[J]. IEEE Trans. Geosci. Remote Sens., 2015, 53:1039-1047
    [31] CHEN X, YANG D, CAI Z, et al. Aerosol retrieval sensitivity and error analysis for the cloud and aerosol polarimetric imager on board tansat:The effect of multi-angle measurement[J]. Remote Sens., 2017, 9:183
    [32] O'DELL CW, CONNOR B, BÖSCH H, et al. The acos CO2 retrieval algorithm part 1:Description and validation against synthetic observations[J]. Atmos. Meas. Techn., 2012, 5:99-121
    [33] CHEN X, WANG J, LIU Y, et al. Angular dependence of aerosol information content in capi/tansat observation over land:effect of polarization and synergy with a-train satellites[J]. Remote Sens. Envir., 2017, 196:163-177
    [34] CONNOR B J, BOESCH H, TOON G, et al. Orbiting carbon observatory:Inverse method and prospective error analysis[J]. J. Geophys. Res.:Atmos., 2008, 113:D05305
    [35] CAI Z, LIU Y, YANG D. Analysis of xco2 retrieval sensitivity using simulated chinese carbon satellite (TanSat) measurements[J]. Sci. China Earth Sci., 2014, 57:1919-1928
    [36] BI Y M, YANG Z D, GU S Y, et al. Impacts of aerosol and albedo on tansat CO2 retrieval using the near infrared CO2 bands[R]//Remote Sensing of the Atmosphere, Clouds, and Precipitation v, 2014
    [37] LIU Y, YANG D, CAI Z. A retrieval algorithm for tansat XCO2 observation:Retrieval experiments using gosat data[J]. Chin. Sci. Bull., 2013, 58:1520-1523
    [38] WUNCH D, TOON G C, BLAVIER J F, et al. The total carbon column observing network[J]. Philos. Trans. A. Math. Phys. Eng. Sci., 2011, 369:2087-2112
    [39] YANG D X, LIU Y, CAI Z N, et al. An advanced carbon dioxide retrieval algorithm for satellite measurements and its application to gosat observations[J]. Sci. Bull., 2015, 60:2063-2066
    [40] YANG D X, ZHANG H F, LIU Y, et al. Monitoring carbon dioxide from space:Retrieval algorithm and flux inversion based on gosat data and using carbontrackerChina[J]. Adv. Atmos. Sci., 2017, 34:965-976
    [41] LIU H, DUAN M, LÜ D, et al. Algorithm for retrieving surface pressure from hyper-spectral measurements in oxygen a-band[J]. Chin. Sci. Bull., 2014, 59:1492-1498
    [42] DENG J, LIU Y, YANG D, et al. Ch4 retrieval from hyperspectral satellite measurements in short-wave infrared:sensitivity study and preliminary test with gosat data[J]. Chin. Sci. Bull., 2014, 59:1499-1507
    [43] TIAN X, XIE Z, CAI Z, et al. The Chinese carbon cycle data assimilation system (tan-tracker)[J]. Chin. Sci. Bull., 2014, 59:1541-1546
    [44] TIAN X, XIE Z, LIU Y, et al. A joint data assimilation system (tan-tracker) to simultaneously estimate surface CO2 fluxes and 3-d atmospheric CO2 concentrations from observations[J]. Atmos. Chem. Phys., 2014, 14:13281-13293
    [45] PEYLIN P, BAKER D, SARMIENTO J, et al. Influence of transport uncertainty on annual mean and seasonal inversions of atmospheric CO2 data[J]. J. Geophys. Res.:Atmos., 2002, 107(19):ACH5-1-ACH5-25
    [46] CHEVALLIER F, PALMER P I, FENG L, et al. Toward robust and consistent regional CO2 flux estimates from in situ and spaceborne measurements of atmospheric CO2[J]. Geophys. Res. Lett., 2014, 41:1065-1070
    [47] OLSEN S C. Differences between surface and column atmospheric CO2 and implications for carbon cycle research[J]. J.Geophys. Res., 2004, 109. DOI: 10.1029/2003JD003968
    [48] TAKAHASHI T, SUTHERLAND S C, WANNINKHOF R, et al. Climatological mean and decadal change in surface ocean PCO(2), and net sea-air CO2 flux over the global oceans[J]. Deep-Sea Res. Part I-Oceanogr. Res. Papers, 2009, 56:2075-2076
    [49] VAN DER WERF G R, RANDERSON J T, GIGLIO L, et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009)[J]. Atmos. Chem. and Phys., 2010, 10:11707-11735
    [50] ODA T, MAKSYUTOV S. A very high-resolution (1 km×1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights[J]. Atmos. Chem. Phys., 2011, 11:543-556
    [51] MORINO I, UCHINO O, INOUE M, et al. Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from gosat shortwavelength infrared spectra[J]. Atmos. Meas. Techn., 2011, 4:1061-1076
    [52] CRISP D, FISHER B M, O'DELL C, et al. The acos CO2 retrieval algorithm-part Ⅱ. Global XCO2 data characterization[J]. Atmos. Measur. Techniq., 2012, 5:687-707
    [53] LE QUERE C, ANDREW R M, FRIEDLINGSTEIN P, et al. Global carbon budget 2017[J]. Earth Syst. Sci. Data, 2018, 10:405-448
    [54] CRUTZEN P J, ANDREAE M O. Biomass burning in the tropics-impact on atmospheric chemistry and biogeochemical cycles[J]. Sci., 1990, 250:1669-1678
    [55] KIVI R, HEIKKINEN P. Fourier transform spectrometer measurements of column CO2 at Sodankyla, Finland[J]. Geosci. Instru. Meth. Data Syst., 2016, 5:271-279
    [56] TUKIAINEN S, RAILO J, LAINE M, et al. Retrieval of atmospheric CH4 profiles from fourier transform infrared data using dimension reduction and MCMC[J]. J. Geophys. Res.:Atmos., 2016, 121:10312-310327
  • 加载中
计量
  • 文章访问数:  952
  • HTML全文浏览量:  74
  • PDF下载量:  488
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-20
  • 刊出日期:  2018-09-15

目录

    /

    返回文章
    返回