留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

System Design for the Event Horizon Imaging Experiment Using the PECMEO Concept

KUDRIASHOV Volodymyr MARTIN-NEIRA Manuel BARAT Itziar MARTIN IGLESIAS Pertonilo DAGANZO-EUSEBIO Elena ALAGHA Nader VALENTA Vaclav

KUDRIASHOV Volodymyr, MARTIN-NEIRA Manuel, BARAT Itziar, MARTIN IGLESIAS Pertonilo, DAGANZO-EUSEBIO Elena, ALAGHA Nader, VALENTA Vaclav. System Design for the Event Horizon Imaging Experiment Using the PECMEO Concept[J]. 空间科学学报, 2019, 39(2): 250-266. doi: 10.11728/cjss2019.02.250
引用本文: KUDRIASHOV Volodymyr, MARTIN-NEIRA Manuel, BARAT Itziar, MARTIN IGLESIAS Pertonilo, DAGANZO-EUSEBIO Elena, ALAGHA Nader, VALENTA Vaclav. System Design for the Event Horizon Imaging Experiment Using the PECMEO Concept[J]. 空间科学学报, 2019, 39(2): 250-266. doi: 10.11728/cjss2019.02.250
KUDRIASHOV Volodymyr, MARTIN-NEIRA Manuel, BARAT Itziar, MARTIN IGLESIAS Pertonilo, DAGANZO-EUSEBIO Elena, ALAGHA Nader, VALENTA Vaclav. System Design for the Event Horizon Imaging Experiment Using the PECMEO Concept[J]. Chinese Journal of Space Science, 2019, 39(2): 250-266. doi: 10.11728/cjss2019.02.250
Citation: KUDRIASHOV Volodymyr, MARTIN-NEIRA Manuel, BARAT Itziar, MARTIN IGLESIAS Pertonilo, DAGANZO-EUSEBIO Elena, ALAGHA Nader, VALENTA Vaclav. System Design for the Event Horizon Imaging Experiment Using the PECMEO Concept[J]. Chinese Journal of Space Science, 2019, 39(2): 250-266. doi: 10.11728/cjss2019.02.250

System Design for the Event Horizon Imaging Experiment Using the PECMEO Concept

doi: 10.11728/cjss2019.02.250
详细信息
    作者简介:

    KUDRIASHOV Volodymyr,E-mail:kudriashovvladimir@gmail.com

  • 中图分类号: P412

System Design for the Event Horizon Imaging Experiment Using the PECMEO Concept

More Information
    Author Bio:

    KUDRIASHOV Volodymyr,E-mail:kudriashovvladimir@gmail.com

  • 摘要: The concept for space interferometry from Polar or Equatorial Circular Medium Earth Orbits (the PECMEO concept) is a promising way to acquire the image of the “shadow” of the event horizon of Sagittarius A* with an angular resolution of circa 5 microarcseconds. The concept is intended to decrease the size of the main reflector of the instrument to about 3 m using a precise orbit reconstruction based on Global Navigation Satellite System (GNSS) navigation, inter-satellite range and range-rate measurements, and data from the Attitude and Orbit Determination System (AODS). The paper provides the current progress on the definition of the subsystems required for the concept on the basis of simulations, radio regulations, and available technology. The paper proposes the requirement for the localization of the phase centre of the main reflector. The paper provides information about the visibility of GNSS satellites and the needed accuracies of the AODS. The paper proposes the frequency plan for the instrument and its Inter-Satellite Links (ISLs). The concepts for measurement of range and range rate using ISLs (as well as for the data exchange at these ISLs) are presented. The block diagram of the interferometer is described and its sensitivity is estimated. The link budget for both ISLs is given as well as their critical components. The calculated measurement quality factors are given. The paper shows the expected performance of the sub-systems of the interferometer. The requirements for the localization of the main reflectors and the information about the availability of the GNSS satellites are based on the simulations results. The frequency plan is obtained according to the PECMEO concept and taking into account the radio regulations. The existing technology defines the accuracies of the AODS as well as the link budgets and the measurement accuracies for both ISLs and the sensitivity of the instrument. The paper provides input information for the development of the orbit reconstruction filter and the whole PECMEO system.

     

  • [1] DOELEMAN S S, WEINTROUB J, ROGERS A E E, et al. Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre[J]. Nature, 2008, 455:78-80
    [2] MARTIN-NEIRA M, KUDRIASHOV V, BARAT I, et al. Space-to-space radio interferometry system from medium Earth orbits[J]. Chin. J. Space Sci., 2017(Submitted)
    [3] The RadioAstron Science and Technical Operations Groups. RadioAstron User Handbook[M]. Moscow:Astro Space Center of P.N. Lebedev Physical Institute, 2013
    [4] SMIRNOV A, DE GRAAUW T, BARYSHEV A, et al. Millimetron:the next step of FIR astronomy[C]//27th International Symposium on Space Terahertz Technology. Cambridge, Massachusetts:The Harvard-Smithsonian Center for Astrophysics, 2015:4
    [5] HANAYAMA E, KURODA S, TAKANO T, et al. Characteristics of the large deployable antenna on HALCA in orbit[J]. IEEE Trans. Anten. Prop., 2004, 52(7):1777-1782
    [6] ZHANG C, WU X, ZHENG J, et al. Orbit design for twin-spacecraft space VLBI[J]. Chin. J. Space Sci., 2015, 35(4):502-510
    [7] FALCKE H, MARKOFF S B. Towards the event horizonthe supermassive black hole in the Galactic Center[J]. Classical Quant. Grav., 2013, 30(24):24
    [8] D'ADDARIO L R. Combining loss of a transmitting array due to phase error[J]. IPN Prog. Rep., 2008, 42(175):7
    [9] DUEV D A, ZAKHVATKIN M V, STEPANYANTS V A, et al. RadioAstron as a target and as an instrument:enhancing the space VLBI mission's scientific output[J]. Astron. Astrophys., 2015, 573:8
    [10] JÄGGI A. Swarm kinematic orbits and gravity fields from 18 months of GPS data[J]. Adv. Space Res., 2016, 57(1):218-233
    [11] ALLENDE-ALBA G, MONTENBRUCK O. Robust and precise baseline determination of distributed spacecraft in LEO[J]. Adv. Space Res., 2016, 57(1):46-63
    [12] PARK H, KIM Y. Relative navigation for autonomous formation flying satellites using the state-dependent Riccati equation filter[J]. Adv. Space Res., 2016, 57(1):166-182
    [13] LEUNG S, MONTENBRUCK O. Real-time navigation of formation-flying spacecraft using global-positioningsystem measurements[J]. J. Guid. Control Dynam., 2005, 28(2):226-235
    [14] EDWARDS C J, ROGSTAD D, FORT D, et al. The goldstone real-time connected element interferometer[J]. Telecommun. Data Acquis. Prog. Rep., 1992, 42(110):52-61
    [15] VAN ALLEN J A. The geomagnetically trapped corpuscular radiation[J]. J. Geophys. Res., 1959, 64(11):1683-1689
    [16] PELTON J N, ALLAHDADI F. Handbook of Cosmic Hazards and Planetary Defence[M]. Switzerland:Springer International Publishing, 2014:225-240
    [17] BAKER D N, JAYNES A N, HOXIE V C, et al. An impenetrable barrier to ultrarelativistic electrons in the Van Allen radiation belts[J]. Nature, 2014, 515:531-539
    [18] BAKER D N, KANEKAL S G, HOXIE V C, et al. A long-lived relativistic electron storage ring embedded in earth's outer van allen belt[J]. Sci., 2013, 340:186-189
    [19] BAKER D N, HOXIE V C, JAYNES A N, et al. James van allen and his namesake nasa mission[J]. EOS Trans. Amer. Geophys. Union, 2013, 94(49):3
    [20] SKOLNIK M I. Introduction to Radar Systems 2nd ed[M]. NewYork:McGraw-Hill Book Company, 1980
    [21] LU R, ROELOFS F, FISH V, et al. Imaging an event horizon:mitigation of source variability of sagittarius A*[J]. Astrophys J., 2016, 817(2):173
    [22] ITU. Radio Regulations edition of 2016[C]//World Radiocommunication Conference. Geneva:ITU, 2015
    [23] ULABY F T, MOORE R K, FUNG A K. Microwave Remote Sensing:Active and Passive, Volume I:Fundamentals and Radiometry[M]Norwood:Artech House Inc., 1981
    [24] KAHR E. Prospects of multiple global navigation satellite system tracking for formation flying in highly elliptical earth orbits[J]. Int. J. Space Sci. Eng., 2013, 1(4):432-447
    [25] SCHMIDT U, FIKSEL T,KWIATKOWSKI A, et al. Autonomous Star Sensor ASTRO APS[J]. CEAS Space J., 2015, 7(2):237-246
    [26] CHRISTOPHE B, MARQUE J, FOULON B. In-orbit data verification of the accelerometers of the ESA GOCE mission[C]//Annual Meeting of the French Society of Astronomy and Astrophysics (SF2A-2010). Grenoble:French Society of Astronomy and Astrophysics, 2010:113-116
    [27] LEVINE D M. The sensitivity of synthetic aperture radiometers for remote sensing applications from space[J]. Radio Sci., 1990, 25(04):441-453
    [28] GOICOECHEA J R, ETXALUZE M, CERNICHARO J, et al. Herschel far-infrared spectroscopy of the galactic center. Hot molecular gas:shocks versus radiation near Sgr A*[J]. Astrophys. J. Lett., 2013, 769(1):7
    [29] VAUGHAN R G, SCOTT N L, WHITE D R. The theory of bandpass sampling[J]. IEEE Trans. Sign. Proc., 1991, 39(9):1973-1984
    [30] TAUBER J A, NORGAARD-NIELSEN H U, ADE P A R, et al. Planck pre-launch status:the optical system[J]. Astron. Astrophys., 2010, 520:22
    [31] CHATTOPADHYAY G, RECK T, SCHLECHT E, et al. Cryogenic amplifier based receivers at submillimeterwave sounders[C]//37th International Conference on Infrared, Millimeter, and Terahertz Waves, 2012. DOI: 10.1109/IRMMW-Hz.2012.6380169
    [32] DEAL W R, ZAMORA A, LEONG K, et al. A 670 GHz low noise amplifier with < 10 dB packaged noise figure[J]. IEEE Microw. Wirel. Co. Lett., 2016, 26(10):837-839
    [33] SCHLECHTWEG M, TESSMANN A, LEUTHER A, et al. Advanced building blocks for (Sub-) millimeterwave applications in space, communication, and sensing using Ⅲ/V mHEMT technology[C]//Global Symposium on Millimeter Waves (GSMM) & ESA Workshop on Millimetre-Wave Technology and Applications, 2016:4. DOI: 10.1109/GSMM.2016.7500293
    [34] THOMPSON A R, MORAN J M, SWENSON JR G W. Interferometry and Synthesis in Radio Astronomy, 3rd ed[M]. Cham:Springer, 2017
    [35] MOSCIBRODZKA M, GAMMIE C F, DOLENCE J C, et al. Radiative models of Sgr A* from GRMHD simulations[J]. Astrophys. J., 2009, 706(1):497-507
    [36] ROBBINS N R, DIBB D R, MENNINGER W L, et al. Space qualified, 75-Watt V-band helix TWTA[C]//IEEE Thirteenth International Vacuum Electronics Conference. Monterey:IEEE, 2012:349-350
    [37] NALBANDIAN R. High torque miniature rotary actuator[C]//11th European Space Mechanisms and Tribology Symposium. Lucerne:European Space Agency, 2005:307-310
    [38] MARTIN-NEIRA M, KUDRIASHOV V, BARAT I, et al. PECMEO:a New Space-to-space Connected-element VLBI Concept[R]. Noordwijk:Advanced RF Sensors and Remote Sensing Instruments (ARSI17) Workshop, 2017
    [39] GRELIER T, GARCIA A, PERAGIN E, et al. GNSS in space, part 2, formation flying radio frequency techniques and technology[J]. Inside GNSS, 2009:43-51
    [40] MACARTHUR J L, POSNER A S. satellite-to-satellite range-rate measurement[J]. IEEE Trans. Geosci. Remote Sens., 1985, 23(4):517-523
    [41] DEVELET J A. Fundamental accuracy limitations in a two-way coherent doppler measurement system[J]. IRE Trans. Space Electron. Telem., 1961, 7(3):80-85
    [42] BARNES J A, CHI A R, CUTLER L S, et al. Characterization of frequency stability[J]. IEEE Trans. Instrum. Meas., 1971, 20(2):105-120
    [43] SHEARD B S, HEINZEL G, DANZMANN K, et al. Intersatellite laser ranging instrument for the GRACE followon mission[J]. J. Geodesy, 2012, 86(12):1083-1095
    [44] BARTON D K, LEONOV S A. Radar Technology Encyclopedia (Electronic Edition)[M]. Norwood:Artech House, 1998
    [45] SHIRMAN Y D, MANZHOS V N. Theory and Techniques for the Processing of a Radar Information on an Interfering Background (in Russian)[R]. Moscow:Radio and Communication, 1981
    [46] SIMONS R N, FORCE D A, SPITSEN P C, et al. Highefficiency K-Band space traveling-wave tube amplifier for near-Earth high data rate communications[C]//IEEE MTT-S International Microwave Symposium, 2010:4. DOI: 10.1109/MWSYM.2010.5518302
  • 加载中
计量
  • 文章访问数:  1292
  • HTML全文浏览量:  22
  • PDF下载量:  2389
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-25
  • 修回日期:  2018-08-22
  • 刊出日期:  2019-03-15

目录

    /

    返回文章
    返回