留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

行星际日冕物质抛射地磁效应研究的支持向量机方法初步研究

叶煜东 冯学尚

叶煜东, 冯学尚. 行星际日冕物质抛射地磁效应研究的支持向量机方法初步研究[J]. 空间科学学报, 2019, 39(3): 295-302. doi: 10.11728/cjss2019.03.295
引用本文: 叶煜东, 冯学尚. 行星际日冕物质抛射地磁效应研究的支持向量机方法初步研究[J]. 空间科学学报, 2019, 39(3): 295-302. doi: 10.11728/cjss2019.03.295
YE Yudong, FENG Xueshang. Study on Geoeffectiveness of Interplanetary Coronal Mass Ejections by Support Vector Machine ormalsize[J]. Journal of Space Science, 2019, 39(3): 295-302. doi: 10.11728/cjss2019.03.295
Citation: YE Yudong, FENG Xueshang. Study on Geoeffectiveness of Interplanetary Coronal Mass Ejections by Support Vector Machine ormalsize[J]. Journal of Space Science, 2019, 39(3): 295-302. doi: 10.11728/cjss2019.03.295

行星际日冕物质抛射地磁效应研究的支持向量机方法初步研究

doi: 10.11728/cjss2019.03.295
基金项目: 

国家自然科学基金项目(41731067,41531073)和中国科学院"十三五"信息化建设专项(XXH13505-04)共同资助

详细信息
    作者简介:

    叶煜东,E-mail:ydye@spaceweather.ac.cn

  • 中图分类号: P353

Study on Geoeffectiveness of Interplanetary Coronal Mass Ejections by Support Vector Machine ormalsize

  • 摘要: 行星际日冕物质抛射(Interplanetary Coronal Mass Ejection,ICME)与地球磁层相互作用并带来地磁暴等地磁扰动.从Richardson和Cane提供的近地球ICME列表中筛选出ICME事件集,基于ICME扰动期间的行星际等离子体与磁场数据提取出特征.通过计算各特征的费舍尔分值(Fisher Score),对这些特征进行选择,发现行星际磁场南北向分量持续时间小于-10nT且激波等扰动所带来的ICME扰动开始时,太阳风速度的增量等特征与ICME事件的地磁效应密切相关.这与现有的传统统计研究结果一致.以这些特征为基础,训练得到的径向基函数支持向量机能够以0.78±0.08的准确率判断ICME事件是否会产生中等及以上强度的地磁暴(Dst ≤-50nT).

     

  • [1] ZURBUCHEN T H, RICHARDSON I G. In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections[J]. Space Sci. Rev., 2006, 123(1/2/3):31-43
    [2] LAKHINA G S, TSURUTANI B T. Geomagnetic storms:historical perspective to modern view[J]. Geosci. Lett., 2016, 3(1):5
    [3] GONZALEZ W D, JOSELYN J A, KAMIDE Y, et al. What is a geomagnetic storm[J]. J. Geophys. Res., 1994, 99:5771-5792
    [4] WU J G, LUNDSTEDT H. Geomagnetic storm predictions from solar wind data with the use of dynamic neural networks[J]. J. Geophys. Res.:Space Phys., 1997, 102(A7):14255-14268
    [5] BALA R, REIFF P. Improvements in short-term forecasting of geomagnetic activity[J]. Space Weather, 2012, 10(6).DOI: 10.1029/2012SW000779.
    [6] WATANABE S, SAGAWA E, OHTAKA K, et al. Prediction of the Dst index from solar wind parameters by a neural network method[J]. Earth Planets Space, 2014, 54(12):1263-1275
    [7] WANG Y M, YE P Z, WANG S, et al. A statistical study on the geoeffectiveness of Earth-directed coronal mass ejections from March 1997 to December 2000[J]. J. Geophys. Res., 2002, 107(A11).DOI: 10.1029/2002JA009244.
    [8] GOPALSWAMY N, YASHIRO S, XIE H, et al. Properties and geoeffectiveness of magnetic clouds during solar cycles 23 and 24[J]. J. Geophys. Res.:Space Phys., 2015, 120(11):9221-9245
    [9] LAWRANCE M B, SHANMUGARAJU A, MOON Y J, et al. Relationships between interplanetary coronal mass ejection characteristics and geoeffectiveness in the rising phase of solar cycles 23 and 24[J]. Sol. Phys., 2016, 291(5):1547-1560
    [10] CANE H V, RICHARDSON I G. Interplanetary coronal mass ejections in the near-Earth solar wind during 1996-2002[J]. J. Geophys. Res., 2003, 108(A4).DOI:10. 1029/2002JA009817.
    [11] RICHARDSON I G, CANE H V. Near-earth interplanetary coronal mass ejections during solar cycle 23(1996-2009):catalog and summary of properties[J]. Sol. Phys., 2010, 264(1):189-237
    [12] MATHEWS G J, TOWHEED S S. NSSDC OMNIWeb:The first space physics WWW-based data browsing and retrieval system[J]. Comp. Networks ISDN Syst., 1995, 27(6):801-808
    [13] GU Q Q, LI Z H, HAN J W. Generalized Fisher Score for Feature Selection[C]//Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, 2011:266-273
    [14] PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al. Scikit-learn:machine learning in Python[J]. J. Mach. Learn. Res., 2011, 12:2825-2530
    [15] CHI Yutian, SHEN Chenglong, WANG Yuming, et al. Statistical study of the interplanetary coronal mass ejections from 1995 to 2015[J]. Sol. Phys., 2016, 291(8):2419-2439
    [16] WANG Yuming, YE Pinzhong, WANG Shui. An interplanetary origin of great geomagnetic storms:multiple magnetic clouds[J]. Chin. J. Geophys., 2004, 47(3):417-423
    [17] TSURUTANI B T, GONZALEZ W D, TANG F, et al. Great magnetic storms[J]. Geophys. Res. Lett., 1992, 19(1):73-76
    [18] BURTON R K, MCPHERRON R L, RUSSELL C T. An empirical relationship between interplanetary conditions and Dst[J]. J. Geophys. Res., 1975, 80(31):4204-4214
    [19] VAPNIK V, GOLOWICH S E, SMOLA A J. Support vector method for function approximation, regression estimation and signal processing[C]//Proceedings of the Advances in Neural Information Processing Systems, 1997:281-287
    [20] AMARI S, MURATA N, MULLER K R, et al. Asymptotic statistical theory of overtraining and cross-validation[J]. IEEE Trans. Neural Netw., 1997, 8(5):985-996
    [21] REFAEILZADEH P, TANG L, LIU H. Cross-validation[R]. Encyclopedia of Database System, US:Springer. DOI: 10.1007/978-0-387-39940-9_565
    [22] KOHAVI R. A study of cross-validation and bootstrap for accuracy estimation and model selection[C]//Proceedings of the 14th International Joint Conference on Artificial Intelligence-Volume 2. Quebec:Morgan Kaufmann Publishers Inc, 1995:1137-1143
    [23] FLUECK J. A study of some measures of forecast verification[C]//Proceedings of the Preprints, 10th Conference on Probability and Statistics in Atmospheric Sciences. Edmonton:Alberta, Am. Meteor. Soc., 1987:69-73
    [24] SHEN Fang, WANG Yuming, SHEN Chenglong, et al. On the collision nature of two coronal mass ejections:a review[J]. Sol. Phys., 2017, 292(8):104
    [25] SHEN Chenglong, CHI Yutian, WANG Yuming, et al. Statistical comparison of the ICME's geoeffectiveness of different types and different solar phases from 1995 to 2014[J]. J. Geophys. Res.:Space Phys., 2017, 122(6):5931-5948
  • 加载中
计量
  • 文章访问数:  2760
  • HTML全文浏览量:  39
  • PDF下载量:  15568
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-05
  • 修回日期:  2019-01-31
  • 刊出日期:  2019-05-15

目录

    /

    返回文章
    返回