留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于经验模态分解的地球同步轨道高能电子通量预报

钱烨栋 张华 杨建伟 武业文

钱烨栋, 张华, 杨建伟, 武业文. 基于经验模态分解的地球同步轨道高能电子通量预报[J]. 空间科学学报, 2019, 39(3): 316-325. doi: 10.11728/cjss2019.03.316
引用本文: 钱烨栋, 张华, 杨建伟, 武业文. 基于经验模态分解的地球同步轨道高能电子通量预报[J]. 空间科学学报, 2019, 39(3): 316-325. doi: 10.11728/cjss2019.03.316
QIAN Yedong, ZHANG Hua, YANG Jianwei, WU Yewen. Prediction of High-energy Electron Flux of Geosynchronous Orbit Based on Empirical Mode Decomposition[J]. Journal of Space Science, 2019, 39(3): 316-325. doi: 10.11728/cjss2019.03.316
Citation: QIAN Yedong, ZHANG Hua, YANG Jianwei, WU Yewen. Prediction of High-energy Electron Flux of Geosynchronous Orbit Based on Empirical Mode Decomposition[J]. Journal of Space Science, 2019, 39(3): 316-325. doi: 10.11728/cjss2019.03.316

基于经验模态分解的地球同步轨道高能电子通量预报

doi: 10.11728/cjss2019.03.316
基金项目: 

国家自然科学基金项目(61572015),江苏省自然科学基金项目(BK20170952,BK20140993),国家重点研究发展计划项目(2018YFC140734,2018YFF01013706)和电波环境特性及模化技术重点实验室专项资金项目(201801003)共同资助

详细信息
    作者简介:

    钱烨栋,E-mail:1035878317@qq.com

  • 中图分类号: P353

Prediction of High-energy Electron Flux of Geosynchronous Orbit Based on Empirical Mode Decomposition

  • 摘要: 在磁暴恢复相期间,大量相对论(高能)电子从磁层的外辐射带渗透到地球同步轨道区.其中>2MeV的高能电子能够穿透卫星表面并聚积在材料内部,导致卫星无法正常运行或完全损坏.磁暴期间的高能电子通量变化的非平稳与非线性特征十分明显.通过实验发现,经验模态分解法能够极大地降低高能电子通量非平稳性问题造成的预报影响.以2008-2009年的数据作为训练集,2010-2013年数据作为测试集.结果表明:2010-2013年的预报率约为0.84;在太阳活动较为复杂的2013年,预报率达到0.81.引入经验模态分解后预报效率得到显著提高.

     

  • [1] LIU Shuai, LI Zhi. Review of relativistic electron flux forecasting models based on system identification technology for earth radiation bands[J]. J. Equip. Inst., 2015, 26(4):82-88(刘帅, 李智. 基于系统辨识技术的地球辐射带高能电子通量预报模型研究综述[J]. 装备学院学报, 2015, 26(4):82-88)
    [2] WRENN G L, RODGERS D J, RYDEXL K A. A solar cycle of spacecraft anomalies due to internal charging[J]. Ann. Geophys., 2002, 20:953-956
    [3] HE Tian, LIU Siqing, XUE Bingsen, et al. The use of geomagnetic pulsations forecast geostationary orbit relativistic electron flux method[J]. Chin. J. Geophys., 2009, 52(10):2419-2427(何甜, 刘四清, 薛炳森, 等. 利用地磁脉动预报地球同步轨道相对论电子通量方法的研究[J]. 地球物理学报, 2009, 52(10):2419-2427)
    [4] PAULIKAS G A, BLAKE J B. Effects of solar the wind on magnetospheric dynamics:energetic electrons at the synchronous orbit[C]. Quantitative Modeling of Magnetospheric Processes, AGU, 1979:180-202
    [5] BAKER D N, MCPHERRON R L, CAYTON T E, et al. Linear prediction filter analysis of relativistic electron properties at 6.6 Re[J]. J. Geophys. Res., 1990, 95(A9):15133-15140
    [6] LI Sheng, HUANG Wengeng. Dynamic prediction model of relativistic electron differential fluxes at the geosynchronous orbit[J]. Chin. J. Space Sci., 2017, 37(3):298-311(李胜, 黄文耿. 地球同步轨道相对论电子微分通量的动态预报模型[J]. 空间科学学报, 2017, 37(3):298-311)
    [7] RIGLER E J, BAKER D N, WEIGEL R S, et al. Adaptive liner prediction of radiation belt electrons using the kalman filter[J]. Space Wea.:Int. J. Res., 2004, 2(3):3003-3011
    [8] SAKGUIC K, MIYOSHI Y, SATIO S, et al. Elative electron flux forecast at geostationary orbit using Kalaman filter based on ultivariate autoregressive model[J]. Space Wea., 2013, 11(2):79-89
    [9] HE Tian, LIU Siqing, SHEN Hua, et al. Quantitative prediction of relativistic electron flux at geosynchronous orbit with geomagnetic pulsation parameters[J]. Chin. J. Space Sci., 2013, 33(1):20-27(何甜, 刘四清, 沈华, 等. 使用地磁脉动参数定量预报地球同步轨道相对论电子通量的建模研究[J]. 空间科学学报, 2013, 33(1):20-27)
    [10] LI X L, TEMERIN M, BAKER D N, et al. Quantitative prediction of radiation belt electrons at geostationary orbit based on solar wind measurements[J]. Geophys. Res. Lett., 2001, 28(9):1887-1890
    [11] LI X. Variations of 0.7-60MeV electrons at geosynchronous orbit ar a function of solar wind[J]. Space Weather, 2004, 2(03):6-15
    [12] TURNER D L, LI X L. Quantitative forecast of relativistic electron flux at geosynchronous orbit based on low-energy electron flux[J]. Space Weather:Int. J. Res., 2008, 6(5):620-628
    [13] POTAPOV A, RYZHAKOVA L, TSEGMED B. A new approach to predict and estimate enhancements of "killer" electron flux at geosynchronous orbit[J]. Acta Astron., 2016, 126(5):47-51
    [14] POTAPOV A, TESGMED B, RYZHAKOVAL. Solar cycle variation of "killer" electrons at geosynchronous orbit and electron flux correlation with the solar wind parameters and ULF waves intensity[J]. Acta Astron., 2014, 93(3):55-63
    [15] FUTAKA M, TAGUCHI S, OKUZAWA T, et al. Neural network prediction of energetic electrons at geosynchronous orbit during the storm recovery phase:effects of recurring substorms[J]. Ann. Geophys., 2002, 20(7):947-951
    [16] LING A G, GINET G P, HILMER R V, et al. A neural network-based geosynchronous relativistic electron flux forecasting model[J]. Space Weather, 2010, 8(09):3-16
    [17] XUE Bingsen, YE Zonghai. Method for forecasting relativistic electron enhan-cement events in geosynchronous orbit[J]. Chin. J. Space Sci., 2004, 24(4):283-288(薛炳森, 叶宗海. 地球同步轨道高能电子增强事件预报方法[J]. 空间科学学报, 2004, 24(4):283-288)
    [18] GUO Ce, XUE Bingsen, LIN Zhaoxiang. Geosynchronous orbit high energy electron flux prediction method[J]. Chin. J. Space Sci., 2013, 33(4):418-426(郭策, 薛炳森, 林兆祥. 地球同步轨道高能电子通量预报方法研究[J]. 空间科学学报, 2013, 33(4):418-426)
    [19] XIAO F L, ZHANG S, SU Z P, et al. Rapid acceleration of radiation belt energetic electrons by Z-mode waves[J]. Geophys. Res. Lett., 2012, 39(3):3103
    [20] ZHANG S, XIAO F L. Chorus-driven outer radiation belt electron dynamics at different shells[J]. Chin. Phys. Lett., 2010, 27(12):219-222
    [21] XU Xiaogang, XU Guanlei, WANG Xiaotong, et al. Empirical Mode Decomposition (EMD) and its applications[J]. Chin. J. Elct., 2009, 37(3):581-585(徐晓刚, 徐冠雷, 王孝通, 等. 经验模式分解(EMD)及其应用[J]. 电子学报, 2009, 37(3):581-585)
    [22] HAO Huan, WANG Huali, WEI Qin. Theory and application of empirical mode decomposition[J]. Chin. High Technol. Lett., 2016, 26(1):67-80(郝欢, 王华力, 魏勤. 经验模态分解理论及其应用[J]. 高技术通讯, 2016, 26(1):67-80)
    [23] REEVES G D, MCADAMS K L, FRIEDEL R H. Acceleration and loss of relativistic electrons during geomagnetic storms[J]. Geophys. Res. Lett., 2003, 30(10):1529-1532
    [24] KELLERMAN A C, SHPRITS Y Y. 2011. On the influence of solar wind conditions on the outer-electron radiation belt[J]. J. Geophys. Res., 2012, 117(A5):5217-5230
    [25] YOUSRFI M R, KASMAEI B S, VAHABIE A, et al. Input selection based on information theory for constructing predictor models of solar and geomagnetic activity indices[J]. Sol. Phys., 2009, 258(2):297-318
    [26] HUANGN E, SHEN Z, LONG S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proc. A, 1998, 454(1971):903-995
    [27] SAIN STEPHAN R. The nature of statistical learning theory[J]. Technometric, 1996, 38(4):409
    [28] RILLING G, FLANDRIN P, GONCALVES P. On empirical mode decomposition and its algorithms//IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing[C]. Grado:IEEE, 2003:8-11
    [29] BROWN R G, HWANG P Y. Introduction to Random Signal and Applied Kalman Filtering[M]. Toronto:John Wiley and Sons, 1992
    [30] YANG Peicai, ZHOU Xiuji. On non-sataionary behaviors and prediction theory of climate systems[J]. J. Meteor. Res., 2005, 63(5):556-570(杨培才, 周秀骥. 气候系统的非平稳行为和预测理论[J]. 气象学报, 2005, 63(5):556-570)
    [31] KIM K C, LEE D Y, KIM H J, et al. Numerical calculations of relativistic electron drift loss effect[J]. Geophys. Res. Lett., 2008, 113(A9):212-225
  • 加载中
计量
  • 文章访问数:  3010
  • HTML全文浏览量:  28
  • PDF下载量:  14584
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-05
  • 修回日期:  2019-02-26
  • 刊出日期:  2019-05-15

目录

    /

    返回文章
    返回