留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于COSMIC的平流层重力波参数分析

王一洲 黄莹莹 李汇军 李崇银

王一洲, 黄莹莹, 李汇军, 李崇银. 基于COSMIC的平流层重力波参数分析[J]. 空间科学学报, 2019, 39(3): 326-341. doi: 10.11728/cjss2019.03.326
引用本文: 王一洲, 黄莹莹, 李汇军, 李崇银. 基于COSMIC的平流层重力波参数分析[J]. 空间科学学报, 2019, 39(3): 326-341. doi: 10.11728/cjss2019.03.326
WANG Yizhou, HUANG Yingying, LI Huijun, LI Chongyin. Analysis of Stratospheric Gravity Wave Parameters Based on COSMIC Observationsormalsize[J]. Journal of Space Science, 2019, 39(3): 326-341. doi: 10.11728/cjss2019.03.326
Citation: WANG Yizhou, HUANG Yingying, LI Huijun, LI Chongyin. Analysis of Stratospheric Gravity Wave Parameters Based on COSMIC Observationsormalsize[J]. Journal of Space Science, 2019, 39(3): 326-341. doi: 10.11728/cjss2019.03.326

基于COSMIC的平流层重力波参数分析

doi: 10.11728/cjss2019.03.326
基金项目: 

国家自然科学基金项目(41504118),江苏省自然科学基金项目(BK20150709)和中国人民解放军理工大学预研项目共同资助

详细信息
    作者简介:

    王一洲,E-mail:276001522@qq.com

  • 中图分类号: P351

Analysis of Stratospheric Gravity Wave Parameters Based on COSMIC Observationsormalsize

  • 摘要: 基于COSMIC卫星观测的2006年12月29日到2008年1月3日30°-40°N纬度内的温度剖面,分别利用垂直滑动窗、双滤波器和单滤波器三种方法计算低平流层重力波的扰动和势能,获得重力波扰动和势能随高度、经度的分布以及多时间尺度变化特性,分析重力波扰动势能与背景温度及风场的变化趋势和特点.比较三种方法得到的结果发现:垂直滑动窗方法只能去除大垂直尺度的背景,无法抑制小尺度的扰动,其得到的结果误差较大;双滤波器法对温度剖面中的大尺度背景和小尺度扰动都能很好地抑制;单滤波器法得到的重力波扰动中基本不包含垂直方向的大尺度背景,但是包含一些小垂直尺度的扰动.因此,对于垂直波长为10km左右的重力波,采用双滤波器法合适;如果需要得到小尺度重力波的变化特性,采用单滤波器法合适.采用双滤波器法无法得到势能随高度的变化,而采用单滤波器法能够给出每月势能随高度的分布.对30°-40°N纬度内的重力波参数进行统计分析得到重力波扰动、势能与背景温度和水平风场的关系.

     

  • [1] LÜ Daren, BIAN Jianchun, CHEN Hongbin, et al. The frontier and importance of the stratospheric atmospheric process research[J]. Earth Prog. Sci., 2009, 24(3):221-228(吕达仁, 卞建春, 陈洪滨, 等.平流层大气过程研究的前沿与重要性[J]. 地球进展科学, 2009, 24(3):221-228)
    [2] FRITTS D C. Gravity wave dynamics and effects in the middle atmosphere[J]. Rev. Geophys., 2003, 41(1). DOI: 10.1029/2001RG000106
    [3] NASTROM G D, FRITTS D C. Sources of mesoscale variability of gravity waves. part I:topographic excitation[J]. J. Atmos. Sci., 2003, 49(2):101-110
    [4] DING Xia. Gravity Waves Generated by Convection and Their Interactions with Mean Flow[D]. Wuhan:Wuhan University, 2011(丁霞. 对流激发重力波及波目互作用研究[D]. 武汉:武汉大学, 2011)
    [5] PLOUGONVEN R, ZHANG F. Internal gravity waves from atmospheric jets and fronts[J]. Rev. Geophys., 2003, 52(1):33-76
    [6] LI Wei, YI Fan. Research on correlation between gravity waves energy and jet[J]. Chin. J. Space Sci., 2011, 31(3):311-317(李伟, 易帆, 急流与低层大气重力波能量的相关性研究[J]. 空间科学学报, 2011, 31(3):311-317)
    [7] SCOTT R B, GOFF J A, NAVEIRA GARABATO A C, et al. Global rate and spectral characteristics of internal gravity wave generation by geostrophic flow over topography[J]. J. Geophys. Res., 2013, 116(C9):DOI: 10.1029/2011JC007005
    [8] LOVEGROVE A F, READ P L, RICHARDS C J. Generation of inertia-gravity waves in a baroclinically unstable fluid[J]. Q. J. Roy. Meteor. Soc., 2000, 126(570):3233-3254
    [9] HUNSUCKER R D. Atmospheric gravity waves generated in the high-latitude ionosphere:a review[J]. Rev. Geophys., 1982, 20(2):293-315
    [10] TAYLOR M J, JAHN J M, FUKAO S, et al. Possible evidence of gravity wave coupling into the mid-latitude F region ionosphere during the SEEK campaign[J]. Geophys. Res. Lett., 1998, 25(11):1801-1804
    [11] ZHANG S D, YI F. A statistical study of gravity waves from radiosonde observations at Wuhan (30°N, 1140° E) China[J]. Ann. Geophys., 2005, 23(3):665-673
    [12] XU Kai, YAO Zhigang, HAN Zhigang, et al. Recent process in near-space gravity wave analysis based on satellite measurements[J]. Adv. Earth Sci., 2017, 32(1):66-74(徐凯, 姚志刚, 韩志刚, 等.临近空间重力波强扰动的卫星观测研究进展[J]. 地球科学进展, 2017, 32(1):66-74)
    [13] ROCKEN C, YINGHWA K, SCHREINER W S, et al. COSMIC system description[J]. Terr. Atmos. Ocean. Sci., 2000, 11(1):21-52
    [14] ANTHES R A, ECTOR D D, HUNT Y H, et al. The COSMIC/FORMOSAT-3 mission:early results[J]. Bull. Am. Meteor. Soc., 2008, 89(3):313-333
    [15] ALEXANDER S, KLEKOCIUK A, TSUDA T. Gravity wave and orographic wave activity observed around the antarctic and arctic stratospheric vortices by the COSMIC GPS-RO satellite constellation[J]. J. Geophys. Res.:Atmos., 2009, 114(D17). DOI: 10.1029/2008JD011851
    [16] ALEXANDER S, TSUDA T, KAWATANI Y. COSMIC GPS observations of northern hemisphere winter stratospheric gravity waves and comparisons with an atmospheric general circulation model[J]. Geophys. Res. Lett., 2008, 35(10). DOI: 10.1029/2008GL033174
    [17] LIANG Chen. Preliminary Study on the Global Stratospheric Gravity Waves Based on COSMIC Satellite Observations[D]. Beijing:University of Science and Technology China, 2014(梁晨. 基于COSMIC卫星观测的全球平流层大气重力波初步研究[D]. 北京:中国科学技术大学, 2014)
    [18] HORINOUCHI T, TSUDA T. Spatial structures and statistics of atmospheric gravity waves derived using a heuristic vertical cross-section extraction from COSMIC GPS radio occultation data[J]. J. Geophys. Res.:Atmos., 2009, 114(D16). DOI: 10.1029/2008JD011068
    [19] WANG L, ALEXANDER M J. Global estimates of gravity wave parameters from GPS radio occultation temperature data[J]. J. Geophys. Res., 2010, 115(D21). DOI: 10.1029/2010JD013860
    [20] WANG Xuelian. Using High-Resolution Radiosonde Data to Analyze the Location of the Tropical Lower Stratospheric Gravity Wave Activity[D]. Nanjing:Nanjing University of Information Science and Technology, 2006(王雪莲.利用高分辨探空资料分析热带下平流层重力波活动[D]. 南京:南京信息工程大学,2006)
    [21] HE W, HOU S P, CHEN H, et al. Assessment of radiosonde temperature measurements in the upper troposphere and lower stratosphere using COSMIC radio occultation data[J]. Geophys. Res. Lett., 2009, 36(17). DOI: 10.1029/2009GL038712
    [22] DEE D P, UPPALA S M, SIMMONS A J, et al. The ERA-interim reanalysis:configuration and performance of the data assimilation system[J]. Q. J. Roy. Meteor. Soc., 2011, 137(656):553-597
    [23] HOCKE K, TSUDA T. Gravity waves and ionospheric irregularities over tropical convection zones observed by GPS/MET radio occultation[J]. Geophys. Res. Lett., 2001, 28(14):2815-2818
    [24] TSUDA T, NISHIDA M, ROCKEN C. A global morphology of gravity wave activity in the stratosphere revealed by the GPS occultation data (GPS/MET)[J]. J. Geophys. Res.:Atmos., 2000, 105(D6):7257-7273
    [25] ALEXANDER S, TSUDA T, KAWATANI Y, et al. Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere:COSMIC observations of wave mean flow interactions[J]. J. Geophys. Res.:Atmos., 2009, 113(D24). DOI: 10.1029/2008JD010374
    [26] FORBES J M, ZHANG X, PALO S E, et al. Kelvin waves in stratosphere, mesosphere and lower thermosphere temperatures as observed by TIMED/SABER during 2002-2006[J]. Earth Planets Space, 2009, 61(4):447-453
    [27] SCHMIDT T, DE LA TORRE A, WICKERT J. Global gravity wave activity in the tropopause region from CHAMP radio occultation data[J]. Geophys. Res. Lett., 2008, 35(16):L16087
    [28] SANTER B D. Behavior of tropopause height and atmospheric temperature in models, reanalyses, and observations:decadal changes[J]. J. Geophys. Res., 2003, 108(D1). DOI: 10.1029/2002JD002258
    [29] DE LA TORRE A, ALEXANDER P, LLAMEDO P, et al. Gravity waves above the andes detected from GPS radio occultation temperature profiles:jet mechanism[J]. Geophys. Res. Lett., 2006, 33(24). DOI: 10.1029/2006GL027343
    [30] ZHANG S D, YI F. A statistical study of gravity waves from radiosonde observations at Wuhan (30°N, 114 E) China[J]. Ann. Geophys., 2005, 23(3):665-673
    [31] ZHANG S D, YI F, HUANG C M, et al. High vertical resolution analyses of gravity waves and turbulence at a midlatitude station[J]. J. Geophys. Res.:Atmos., 2012, 117(D2). DOI: 10.1029/2011JD016587
    [32] ZHANG S D, YI F, HUANG C M, et al. Latitudinal and altitudinal variability of lower atmospheric inertial gravity waves revealed by U.S. radiosonde data[J]. J. Geophys. Res.:Atmos., 2013, 118(14):7750-7764
  • 加载中
计量
  • 文章访问数:  2743
  • HTML全文浏览量:  6
  • PDF下载量:  12113
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-29
  • 修回日期:  2019-01-04
  • 刊出日期:  2019-05-15

目录

    /

    返回文章
    返回