留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

附加先验轨道约束的LEO几何法实时精密定轨验证分析

师一帅 郝金明 焦文海 董明 焦博 刘伟平

师一帅, 郝金明, 焦文海, 董明, 焦博, 刘伟平. 附加先验轨道约束的LEO几何法实时精密定轨验证分析[J]. 空间科学学报, 2019, 39(3): 354-364. doi: 10.11728/cjss2019.03.354
引用本文: 师一帅, 郝金明, 焦文海, 董明, 焦博, 刘伟平. 附加先验轨道约束的LEO几何法实时精密定轨验证分析[J]. 空间科学学报, 2019, 39(3): 354-364. doi: 10.11728/cjss2019.03.354
SHI Yishuai, HAO Jinming, JIAO Wenhai, DONG Ming, JIAO Bo, LIU Weiping. Demonstration and Analysis of LEO Real-time Kinematic Precise Orbit Determination with Priori Orbit Constraint ormalsize[J]. Journal of Space Science, 2019, 39(3): 354-364. doi: 10.11728/cjss2019.03.354
Citation: SHI Yishuai, HAO Jinming, JIAO Wenhai, DONG Ming, JIAO Bo, LIU Weiping. Demonstration and Analysis of LEO Real-time Kinematic Precise Orbit Determination with Priori Orbit Constraint ormalsize[J]. Journal of Space Science, 2019, 39(3): 354-364. doi: 10.11728/cjss2019.03.354

附加先验轨道约束的LEO几何法实时精密定轨验证分析

doi: 10.11728/cjss2019.03.354
基金项目: 

国家自然科学基金项目(41804035)和地理信息工程国家重点实验室开放研究基金项目(SKLGIE2017-M-2-1)共同资助

详细信息
    作者简介:

    师一帅,E-mail:shiyishuai@qq.com

  • 中图分类号: P228

Demonstration and Analysis of LEO Real-time Kinematic Precise Orbit Determination with Priori Orbit Constraint ormalsize

  • 摘要: 低轨卫星的实时精密定轨能够极大拓展其完成复杂科学任务的能力,例如实时环境监测、机动控制和卫星自主导航等.本文根据几何法实时精密定轨模型,提出了附加LEO先验轨道约束从而改善实时定轨的精度、收敛速度和稳定性的构想.分别采用广播星历、超快速星历预报部分和实时精密星历,设计了6种实时定轨方案,并利用Swarm-A,B,C星7天的观测数据进行方案验证与分析.结果表明,使用广播星历、IGU和IGC星历的方案精度递增,附加先验轨道约束能够进一步提升精度.使用IGC星历并附加标准差为1m的先验轨道约束后,在径向、切向和法向的定轨精度分别达到6.12cm,5.55cm和4.98cm.此外,附加先验轨道约束能够显著提升收敛速度,使用IGC星历平均收敛时间约为31min,附加标准差为1m的先验轨道约束后收敛仅需约4min.

     

  • [1] MONTENBRUCK O, GILL E. Satellite Orbits:Models, Methods, and Applications[M]. Berlin:Springer, 2000
    [2] LI M, LI W, SHI C, et al. Precise orbit determination of the Fengyun-3C satellite using onboard GPS and BDS observations[J]. J. Geodesy, 2017, 91(4):1-15
    [3] KUANG Cuilin. Research on Precise Orbit Determination Theory and Methods of Lower Earth Orbit Satellites Using Zero-difference GPS Data[D]. Wuhan:Wuhan University, 2008(匡翠林. 利用GPS非差数据精密确定低轨卫星轨道的理论及方法研究[D]. 武汉:武汉大学, 2008)
    [4] LIU Weiping, HAO Jinming, WANG Zhiming. Comparison and analysis of some methods of LEO space-borne GNSS precise orbit determination[J]. J. Geomat. Sci. Technol., 2014, 2:140-144(刘伟平, 郝金明, 王智明. 几种LEO星载GNSS精密定轨方法的对比分析[J]. 测绘科学技术学报, 2014, 2:140-144)
    [5] QIN Xianping. Research on Precision Orbit Determination Theory and Method of Low Earth Orbiter Based on GPS Technique[D]. Zhengzhou:Information Engineering University, 2009(秦显平. 星载GPS低轨卫星定轨理论及方法研究[D]. 郑州:解放军信息工程大学, 2009)
    [6] GILL E, MONTENBRUCK O, ARICHANDRAN K, et al. High-precision onboard orbit determination for small satellites-the GPS-based XNS on X-SAT[C]//Symposium on Small Satellites Systems and Services. La Rochelle:ESA, 2004:47
    [7] REICHERT A, MEEHAN T, MUNSON T. Toward decimeter-level real-time orbit determination:a demonstration using the SAC-C and CHAMP spacecraft[J]. Proc. Int. Technol. Meet. Satell. Div. Inst. Navig., 2002:1996-2003
    [8] WANG Fuhong, GONG Xuewen, LIU Wankei. A novel decimeter-level real-time orbit determination algorithm using space-borne GPS measurements with separation and absorption of broadcast ephemeris error[J]. Geomat. Inf. Sci. Wuhan Univ., 2015, 40(9):1230-1236(王甫红, 龚学文, 刘万科. 顾及广播星历误差分离吸收的分米级星载GPS实时定轨新方法[J]. 武汉大学学报(信息科学版), 2015, 40(9):1230-1236)
    [9] CHEN P, ZHANG J, SUN X. Real-time kinematic positioning of LEO satellites using a single-frequency GPS receiver[J]. GPS Sol., 2016, 21(3):1-12
    [10] WERMUTH M, HAUSCHILD A, MONTENBRUCK O, et al. TerraSAR-X precise orbit determination with real-time GPS ephemerides[J]. Adv. Space Res., 2012, 50(5):549-559
    [11] MONTENBRUCK O, HAUSCHILD A, ANDRES Y, et al. (Near-)real-time orbit determination for GNSS radio occultation processing[J]. GPS Sol., 2013, 17(2):199-209
    [12] ZHANG Xiaohong, LI Pan, ZUO Xiang. Kinematic precise orbit determination based on ambiguity-fixed PPP[J]. Geomat. Inf. Sci.Wuhan Univ., 2013, 38(9):1009-1013(张小红, 李盼, 左翔. 固定模糊度的精密单点定位几何定轨方法及结果分析[J]. 武汉大学学报(信息科学版), 2013, 38(9):1009-1013)
    [13] TIAN Yingguo. Research on the Key Technologies of Swarm Satellites Precise Orbit Determination[D]. Zhengzhou:Information Engineering University, 2017
    [14] EL-MOWAFY A, DEO M, KUBO N. Maintaining real-time precise point positioning during outages of orbit and clock corrections[J]. GPS Sol., 2017, 21(3):937-947
    [15] GEBHARD H, WEBER G. NTRIP:Networked transport of RTCM via Internet protocol-Internet radio technology for real-time GNSS purposes[C]//AGU Fall Meeting. San Francisco:AGU, 2003
    [16] YANG Yang. PPP Based Sequential Orbit Determination for Satellites in Low Earth Orbit[D]. Xi'an:Northwestern Polytechnical University, 2015
    [17] WANG Yafei, ZHONG Shiming, WANG Haitao, et al. Precision analysis of LEO satellite orbit prediction[J]. Acta Geod. Cartog. Sin., 2016, 45(9):1035-1041
    [18] IJSSEL J V D, ENCARNAÇÃO J, DOORNBOS E, et al. Precise science orbits for the Swarm satellite constellation[J]. Adv. Space Res., 2015, 56(6):1042-1055
    [19] HADAS T, BOSY J. IGS RTS precise orbits and clocks verification and quality degradation over time[J]. GPS Sol., 2015, 19(1):93-105
    [20] SHAO Kai, GU Defeng, TU Xianqin, et al. Applications of IGS real-time products in precise point positioning and LEO satellites precise orbit determination[C]//China Satellite Navigation Conference. Changsha:CSNO, 2016
    [21] LI P, ZHANG X. Integrating GPS and GLONASS to accelerate convergence and initialization times of precise point positioning[J]. GPS Sol., 2014, 18(3):461-471
  • 加载中
计量
  • 文章访问数:  2708
  • HTML全文浏览量:  4
  • PDF下载量:  10762
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-17
  • 修回日期:  2019-02-14
  • 刊出日期:  2019-05-15

目录

    /

    返回文章
    返回