留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基座与臂杆全弹性空间机器人的有限时间控制

黄小琴 陈力

黄小琴, 陈力. 基座与臂杆全弹性空间机器人的有限时间控制[J]. 空间科学学报, 2019, 39(3): 399-406. doi: 10.11728/cjss2019.03.399
引用本文: 黄小琴, 陈力. 基座与臂杆全弹性空间机器人的有限时间控制[J]. 空间科学学报, 2019, 39(3): 399-406. doi: 10.11728/cjss2019.03.399
HUANG Xiaoqin, CHEN Li. Finite Time Control of Space Robot with Elastic Base and Flexible Arms[J]. Journal of Space Science, 2019, 39(3): 399-406. doi: 10.11728/cjss2019.03.399
Citation: HUANG Xiaoqin, CHEN Li. Finite Time Control of Space Robot with Elastic Base and Flexible Arms[J]. Journal of Space Science, 2019, 39(3): 399-406. doi: 10.11728/cjss2019.03.399

基座与臂杆全弹性空间机器人的有限时间控制

doi: 10.11728/cjss2019.03.399
基金项目: 

国家自然科学基金项目(11372073,11072061)与福建省工业机器人基础部件技术重大研发平台项目(2014H21010011)共同资助

详细信息
    作者简介:

    黄小琴,E-mail:hxq582p@163.com

  • 中图分类号: V42;TP241

Finite Time Control of Space Robot with Elastic Base and Flexible Arms

  • 摘要: 探讨了基座、臂杆全弹性影响下,基于有限时间的漂浮基空间机器人系统轨迹跟踪以及柔性抑振问题.由于弹性基座与两柔性杆之间存在多重动力学耦合关系,此系统为高度非线性系统.将弹性基座与臂杆间的连接视为线性弹簧,利用拉格朗日第二类方程并结合假设模态法,推导出该系统的动力学模型;应用奇异摄动理论的两种时间尺度假设,将系统分解为表示刚性运动的慢变子系统和表示基座弹性、双柔杆振动的快变子系统.针对慢变子系统,设计了一种基于名义模型的有限时间控制器,保证完成刚性期望轨迹跟踪.设计的积分式滑模面具有有限时间收敛特性,比传统渐近收敛控制方法具有更快的收敛速度和更强的鲁棒性;对于快变子系统,采用线性二次型最优控制同时抑制弹性基座与两柔性杆的振动.Lyapunov理论证明了所提控制算法能使跟踪误差在有限时间内收敛到原点.仿真验证了控制方法的有效性.

     

  • [1] NANOS K, PAPADOPOULOS E. On the use of free-floating space robots in the presence of angular momentum[J]. Intel. Serv. Robot., 2011, 4(1):3-15
    [2] ABAD A F, MA O, PHAM K, et al. A review of space robotics technologies for on-orbit servicing[J]. Prog. Aerosp. Sci., 2014, 3(02):1-26
    [3] JARZBOWSKA E, PIETRAK K. Constrained mechanical systems modeling and control:a free-floating space manipulator case as a multi-constrained systems[J]. Robot. Auton. Syst., 2014, 62(10):1353-1360
    [4] DONG Qiuhuang, CHEN Li. Impact dynamics of flexible space manipulator capturing a satellite, stabilization control and flexible vibration linear quadratic optimal suppression[J]. Chin. J. Space Sci., 2014, 34(3):367-376(董楸煌, 陈力. 柔性空间机械臂捕获卫星过程的碰撞动力学、镇定控制和柔性振动线性二次最优抑制[J]. 空间科学学报, 2014, 34(3):367-376)
    [5] SABATINI M, GASBARRI P, MONTI R, et al. Vibration control of a flexible space manipulator during on orbit operations[J]. Acta Astronaut., 2012, 73:109-121
    [6] YU Xiaoyan, CHEN Li. Singular perturbation adaptive control and vibration suppression of free-flying flexible space manipulators[J]. Proceed. Inst. Mech. Eng. Part C:J. Mech. Eng. Sci., 2015, 229(11):1989-1997
    [7] JOONO C, WAN K C, YOUNGIL Y. Fast Suppression of Vibration for Multi-link Flexible Robots Using Parameter Adaptive Control[C]//Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Maui, Hawail, USA:IEEE, 2001:913-918
    [8] EVANS L. Canadian space robotics on board the international space[C]//2005 CCToMM Symposium on Mechanism, Machines, and Mechatronics. Montreal:Canadian Space Agency, 2005:26-27
    [9] LIANG Jie, CHEN Li. Robust adaptive sliding mode control and dual vibration suppression in flexible joint manipulator of space station with elastic foundation[J]. Manned Spaceflight, 2016, 22(6):788-796(梁捷, 陈力. 基座弹性影响下空间站柔性关节机械臂的鲁棒自适应滑模控制及双重弹性振动主动抑制[J]. 载人航天, 2016, 22(6):788-796)
    [10] GAO Fangzheng, WU Yuqiang, ZHANG Zhongcai. Finite-time stabilization of uncertain nonholonomic systems in feedforward-like form by output feedback[J]. ISA Trans., 2015, 59:125-132
    [11] WANG X, SUN X, LI S, et al. Finite-time position tracking control of rigid hydraulic manipulators based on high-order terminal sliding mode[J]. J. Syst. Control Eng., 2011, 226(3):394-415
    [12] SONG Zhaikui, LI Hongxing, SUN Kaibiao. Finite-time control for nonlinear spacecraft attitude control based on terminal sliding mode control technique[J]. ISA Trans., 2014, 53(1):117-124
    [13] NI Zhenhua. Vibration Mechanics[M]. Xi'an:Xi'an Jiao Tong University Press, 1988(倪振华. 振动力学[M]. 西安:西安交通大学出版社, 1988)
    [14] YU Shuanghe, YU Xinghuo, SHIRINZADEH Bijan, et al. Continuous finite-time control for robotic manipulators with terminal sliding mode[J]. Automatica, 2005, 41(11):1957-1964
    [15] LU Kunfeng, XIA Yuanqing. Adaptive attitude tracking control for rigid spacecraft with finite-time convergence[J]. Automatica, 2013, 49(12):3591-3599
  • 加载中
计量
  • 文章访问数:  2629
  • HTML全文浏览量:  2
  • PDF下载量:  15981
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-25
  • 修回日期:  2018-08-31
  • 刊出日期:  2019-05-15

目录

    /

    返回文章
    返回