留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

火星信道衰落特性对通信链路预算的影响

杜艺颖 姚秀娟 范亚楠 闫毅 高翔

杜艺颖, 姚秀娟, 范亚楠, 闫毅, 高翔. 火星信道衰落特性对通信链路预算的影响[J]. 空间科学学报, 2019, 39(5): 701-708. doi: 10.11728/cjss2019.05.701
引用本文: 杜艺颖, 姚秀娟, 范亚楠, 闫毅, 高翔. 火星信道衰落特性对通信链路预算的影响[J]. 空间科学学报, 2019, 39(5): 701-708. doi: 10.11728/cjss2019.05.701
DU Yiying, YAO Xiujuan, FAN Yanan, YAN Yi, GAO Xiang. Influence of Mars Channel Fading Characteristics on Communication Link Budget[J]. Chinese Journal of Space Science, 2019, 39(5): 701-708. doi: 10.11728/cjss2019.05.701
Citation: DU Yiying, YAO Xiujuan, FAN Yanan, YAN Yi, GAO Xiang. Influence of Mars Channel Fading Characteristics on Communication Link Budget[J]. Chinese Journal of Space Science, 2019, 39(5): 701-708. doi: 10.11728/cjss2019.05.701

火星信道衰落特性对通信链路预算的影响

doi: 10.11728/cjss2019.05.701
详细信息
    作者简介:

    杜艺颖,672646048@qq.com

    通讯作者:

    姚秀娟,E-mail:yaoxj@nssc.ac.cn

  • 中图分类号: P353

Influence of Mars Channel Fading Characteristics on Communication Link Budget

  • 摘要: 对火星星体段的信道衰落特性进行研究.通过对近火段自然环境因素的分析,提取影响火星通信性能的因素,重点分析火星的大气、云雾、沙尘对通信信道的衰落作用机理;并以NASA实际火星探测任务为例,针对以上衰落因素对UHF,S,X和Ka频段下的通信链路影响情况进行仿真;结合实际探测数据对地球通信链路预算模型进行修正,提出一种适用于火星通信链路预算的模型;明确火星大气衰落、云雾衰落、沙尘衰落的取值范围.研究结果可作为火星及其他深空探测任务的通信系统设计与链路复核复算的参考.

     

  • [1] RAO Wei, SUN Zezhou, MENG Linzhi, et al. Analysis of technical approaches to key aspects of Mars landing detection mission[J]. J. Deep Space Explor., 2016, 3(2):121-128(饶炜, 孙泽洲, 孟林智, 等. 火星着陆探测任务关键环节技术途径分析[J]. 深空探测学报, 2016, 3(2):121-128)
    [2] HAN Lin. NASA successfully launched Insight Mars probe[J]. Chin. J. Space Sci., 2018, 38(4):430(韩淋. NASA成功发射Insight火星探测器[J]. 空间科学学报, 2018, 38(4):430)
    [3] DWAYNE Brown, JOANNA W. NASA finds ancient organic material, mysterious methane on Mars[EB/OL].[2018-06-12]. https://www.nasa.gov/press-release/nasa-finds-ancient-organic-material-mysterious-methane-on-mars
    [4] International Telecommunication Union. Calculation of Free-space Attenuation[R]. Electronic Publication, Geneva:International Telecommunication Union, 2016
    [5] International Telecommunication Union. Reference Standard Atmospheres[R]. Electronic Publication, Geneva:International Telecommunication Union, 2017
    [6] International Telecommunication Union. Attenuation by Atmospheric Gases[R]. Electronic Publication, Geneva:International Telecommunication Union, 2016
    [7] International Telecommunication Union. Attenuation Due to Clouds and Fog[R]. Electronic Publication, Geneva:International Telecommunication Union, 2017
    [8] ANDRADE F J A, CRUZ P A, DA S M L A R. Evaluation of ITU-R rain attenuation prediction methods for terrestrial links[C]//Microwave and Optoelectronics Conference. Aveiro:IEEE, 2016
    [9] International Telecommunication Union. The Concept of Transmission Loss for Radio Links[R]. Electronic Publication, Geneva:International Telecommunication Union, 2016
    [10] WU Tong, YAN Yi, LI Yongcheng, et al. Deep space channel modeling and the analysis of wave propagation environment characteristics under solar scintillation[J]. Chin. J. Radio Sci., 2015, 30(3):417-422(吴桐, 闫毅, 李永成, 等. 太阳闪烁下深空信道建模与电波传播特性分析[J]. 电波科学学报, 2015, 30(3):417-422)
    [11] WU T, YAN Y, LI Y, et al. Deep space communication channel characteristics under solar scintillation[C]//Fourth International Conference on Instrumentation and Measurement. Harbin:IEEE Computer Society, 2014:510-515
    [12] WU Tong, YAN Yi, WANG Chunmei. Modeling of communication channel for space ionizing media[J]. Electron. Design Eng., 2018, 26(4):43-47(吴桐, 闫毅, 王春梅. 空间电离介质通信信道建模[J]. 电子设计工程, 2018, 26(4):43-47)
    [13] SANCHEZ E A, ANGERT M P, ADAMS N H, et al. Outer planets proximity link protocol[C]//Aerospace Conference. Big SKY, MT:IEEE, 2017
    [14] EDWARDS C D, BELL D J, BISWAS A, et al. Proximity link design and performance options for a Mars areostationary relay satellite[C]//Aerospace Conference. Big Sky, MT:IEEE, 2016:1-10
    [15] WIKIPEDI A. Atmosphere of Mars[OL].[2018-11-05]. https://en.wikipedia.org/wiki/Atmosphere_of_Mars
    [16] MORABITO D D. A comparison of estimates of atmospheric effects on signal propagation using ITU models:initial study results[J]. Interplanet. Network Prog. Rep., 2014, 199:1-24
    [17] HASSLER D M, ZEITLIN C, WIMMER-SCHWEINGRUBER R F, et al. Mars' surface radiation environment measured with the mars science laboratory's curiosity rover[J]. Science, 2014, 343(6169):1244797
    [18] WANG Jiang. Research on Deep Space Channel Model of Mars Communication and Realization of Simulator[D]. Beijing:Beijing Institute of Technology, 2015
    [19] ZHOU Fankun, ZHANG Xiaolin, LI Zan. Budget analysis of Mars-Earth relay communication links[J]. J. Telemet. Track. Comm., 2018, 2:48-56
    [20] ZHANG Tiansheng, ZHANG Xiaolin, XU Chi, et al. Research on budget method of Mars-Earth communication link[J]. J. Telemet. Tracking Command, 2016, 37(3):48-53
    [21] ELSAID A, LEWIS S R, PATEL M R, et al. Quantifying the impact of local dust storms on Martian atmosphere using the LMD/UK Mars global climate model[C]//Mars Atmosphere:Modelling and Observation. The Sixth International Workshop on the Mars Atmosphere:Modelling and observation, 2017
    [22] CRADDOCK R A, LORENZ R D. The changing nature of rainfall during the early history of Mars[J]. Icarus, 2017, 293:172-179
  • 加载中
计量
  • 文章访问数:  1235
  • HTML全文浏览量:  164
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-10
  • 修回日期:  2019-04-16
  • 刊出日期:  2019-09-15

目录

    /

    返回文章
    返回