[1] |
FENG Xueshang, XIANG Changqing, ZHONG Dingkun. Numerical study of interplanetary solar storms[J]. Sci. Sin.:Terr., 2013, 43:912-933(冯学尚, 向长青, 钟鼎坤. 行星际太阳风暴的数值模拟研究[J]. 中国科学:地球科学, 2013, 43:912-933)
|
[2] |
FENG Xueshang, XIANG Changqing, ZHONG Dingkun. Advances in Three-Dimensional numerical study of coronal planetary processes in solar storms[J]. Sci. Sin.:Terr., 2011, 41(1):1-28(冯学尚, 向长青, 钟鼎坤. 太阳风暴的日冕行星际过程三维数值研究进展[J]. 中国科学:地球科学, 2011, 41(1):1-28)
|
[3] |
AKASOFU S I, FRY C F. A first generation numerical geomagnetic storm prediction scheme[J]. Planet. Space Sci., 1986, 34:77-92
|
[4] |
GÁBOR Tóth, SOKOLOV I V, GOMBOSI T I, et al. Space weather modeling framework:A new tool for the space science community[J]. J. Geophys. Res., 2005, 110:A12226
|
[5] |
LIEMOHN M W, WELLING D T, DE ZEEUW D, et al. Real-time SWMF at CCMC:Assessing the Dst output from continuous operational simulations[J]. Space Weather, 2018, 16(10):1583-1603
|
[6] |
DETMAN T, SMITH Z, DRYER M, et al. A hybrid heliospheric modeling system:Background solar wind[J]. J. Geophys. Res.:Space Phys., 2006, 111:A07102
|
[7] |
INTRILIGATOR D S, DETMAN T, GLOECKER G, et al. Pickup protons:Comparisons using the three-dimensional MHD HHMS-PI model and Ulysses SWICS measurements[J]. J. Geophys. Res.:Space Phys., 2012, 117(A6):A06104
|
[8] |
TAKTAKISHVILI A, KUZNETSOVA M, MACNEICE P, et al. Validation of the coronal mass ejection predictions at the Earth orbit estimated by ENLIL heliosphere cone model[J]. Space Weather, 2016, 7(3):S03004
|
[9] |
NAKAMIZO A, TANAKA T, KUBO Y, et al. Development of the 3-D MHD model of the solar corona-solar wind combining system[J]. J. Geophys. Res.:Space Phys., 2009, 114(A7):A07109
|
[10] |
FENG Xueshang, ZHOU Yufen, WU S T. A novel numerical implementation for solar wind modeling by the modified conservation element/solution element method[J]. Astrophys. J., 2007, 655(2):1110-1126
|
[11] |
FENG Xueshang, ZHANG Shaohua, XIANG Changqing, et al. A hybrid solar wind model of the CESE+HLL method with a Yin-Yang overset grid and an AMR grid[J]. Astrophys. J., 2011, 734(1):50
|
[12] |
YANG Liping, FENG Xueshang, XIANG Changqing, et al. Simulation of the unusual solar minimum with 3D SIP-CESE MHD model by comparison with multi-satellite observations[J]. Sol. Phys., 2011, 271(1-2):91-110
|
[13] |
FENG Xueshang, YANG Liping, XIANG Changqing, et al. Validation of the 3D AMR SIP-CESE solar wind model for four carrington rotations[J]. Sol. Phys., 2012, 279:207-229
|
[14] |
ZHOU Yufen, FENG Xueshang. MHD numerical study of the latitudinal deflection of coronal mass ejection[J]. J. Geophys. Res.:Space Phys., 118:6007-6018
|
[15] |
ZHAO Xinhua, FENG Xueshang, ZHOU Yufen. Using a 3-D MHD simulation to interpret propagation and evolution of a coronal mass ejection observed by multiple spacecraft:The 3 April 2010 event[J]. J. Geophys. Res.:Space Phys., 119:9321-9333
|
[16] |
BRACKBILL J U, BARNES D C. The effect of nonzero product of magnetic gradient and B on the numerical solution of the magnetohydrodynamic equations[J]. J. Comp. Phys., 1980, 35(7254):165
|
[17] |
DELLAR P J. A note on magnetic monopoles and the one-dimensional mhd Riemann problem[J]. J. Comp. Phys., 2001, 172(1):392-398
|
[18] |
EVANS C R, HAWLEY J F. Simulation of general relativistic magnetohydrodynamic flows:A constrained transport method, Astrophys[J]. Genomics, 1988, 2(1):14-24
|
[19] |
ZIEGLER U. A central-constrained transport scheme for ideal magnetohydrodynamics[J]. J. Comp. Phys., 2004, 196(2):393-416
|
[20] |
BALSARA D S. Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics[J]. J. Comp. Phys., 2008, 228(14):5040-5056
|
[21] |
JIANG G S, WU C C. A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics[J]. J. Comput. Phys., 1999, 150(2):561-594
|
[22] |
RAMSHAW J D. A method for enforcing the solenoidal condition on magnetic field in numerical calculations[J]. J. Comp. Phys., 1983, 52(3):592-596
|
[23] |
POWELL K, ROE P, MYONG R, et al. An upwind scheme for magnetohydrodynamics[C]//12th Computational Fluid Dynamics Conference, San Diego:American Institute of Aeronautics and Astronautics, 1995:1704
|
[24] |
POWELL K G, ROE P L, LINDE T J, et al. A solution-adaptive upwind scheme for ideal magnetohydrodynamics[J]. J. Comp. Phys., 1999, 154(2):284-309
|
[25] |
DEDNER A, KEMM F, KRONER D, et al. Hyperbolic divergence cleaning for the MHD equations[J]. J. Comp. Phys., 2002, 175(2):645-673
|
[26] |
MIGNONE A, TZEFERACOS P. A second-order unsplit Godunov scheme for cell-centered MHD:The CTU-GLM scheme[J]. J. Comp. Phys., 2010, 229(6):2117-2138
|
[27] |
MIGNONE A, TZEFERACOS P, BODO G, et al. High-order conservative finite difference GLM-MHD schemes for cell-centered MHD[J]. J. Comp. Phys., 2010, 229(17):5896-5920
|
[28] |
YALIM M S, ABEELE D V, LANI A, et al. A finite volume implicit time integration method for solving the equations of ideal magnetohydrodynamics for the hyperbolic divergence cleaning approach[J]. J. Comp. Phys., 2011, 230(15):6136-6154
|
[29] |
ABBO L, OFMAN L, ANTIOCHOS S K, et al. Slow solar wind:Observations and modeling[J]. Space Sci. Rev., 2016, 201(1-4):55-108
|
[30] |
ARGE C N, PIZZO V J. Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates[J]. J. Geophys. Res.:Space Phys., 2000, 105(A5):10465-10479
|
[31] |
FENG Xueshang, YANG Liping, XIANG Changqing, et al. Three-dimensional solar WIND modeling from the Sun to Earth by a SIP-CESE MHD model with a six-component Grid[J]. Astrophys. J., 2010, 723(1):300
|
[32] |
GOMBOSI T I, DE ZEEUW D L, POWELL K G, et al. Adaptive mesh refinement for global magnetohydrodynamic simulation[J]. Lect. Not. Phys., 2003, 615:247-274
|
[33] |
TANAKA T. Finite volume TVD scheme on an unstructured grid system for three-dimensional MHD simulation of inhomogeneous systems including strong background potential fields[J]. J. Comp. Phys., 1994, 111(2):381-389
|
[34] |
JANHUNEN P, PALMROTH M, LAITINEN T, et al. The GUMICS-4 global MHD magnetosphere-ionosphere coupling simulation[J]. J. Atmos. Sol.:Terr. Phys., 2012, 80(3):48-59
|
[35] |
TÓTH G, BART V D H, SOKOLOV I V, et al. Adaptive numerical algorithms in space weather modeling[J]. J. Comp. Phys., 2012, 231(3):870-903
|
[36] |
BART V D H, MANCHESTER IV W B, FRAZIN R A, et al. A data-driven, two-temperature solar wind model with Alfven waves[J]. Astrophys. J., 2010, 725(1):1373
|
[37] |
CHEN Yao. Multi-fluid Solar Wind Models[D]. Hefei:University of Science and Technology of China, 2004(陈耀. 多成分太阳风模型[D]. 合肥:中国科学技术大学, 2004)
|
[38] |
ENDEVE E, LEER E, HOLZER T E. Two-dimensional magnetohydrodynamic models of the solar corona:mass loss from the streamer belt[J]. Astrophys. J., 2003, 589(2):1040
|
[39] |
TOMA G D. Evolution of coronal holes and implications for high-speed solar wind during the minimum between cycles 23 and 24[J]. Sol. Phys., 2011, 274(1/2):195-217
|
[40] |
LEER E, HOLZER T E. Energy addition in the solar wind[J]. J. Geophys. Res. Space, 1980, 85(A9):4681-4688
|