留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低纬(海南)电离层等离子体漂移对地磁活动的响应

洪宇 王国军 史建魁 王霄 程征伟 王铮 尚社平

洪宇, 王国军, 史建魁, 王霄, 程征伟, 王铮, 尚社平. 低纬(海南)电离层等离子体漂移对地磁活动的响应[J]. 空间科学学报, 2019, 39(6): 730-737. doi: 10.11728/cjss2019.06.730
引用本文: 洪宇, 王国军, 史建魁, 王霄, 程征伟, 王铮, 尚社平. 低纬(海南)电离层等离子体漂移对地磁活动的响应[J]. 空间科学学报, 2019, 39(6): 730-737. doi: 10.11728/cjss2019.06.730
HONG Yu, WANG Guojun, SHI Jiankui, WANG Xiao, CHENG Zhengwei, WANG Zheng, SHANG Sheping. Response of Low-latitude Hainan Ionospheric Plasma Drifts to Geomagnetic Activities[J]. Journal of Space Science, 2019, 39(6): 730-737. doi: 10.11728/cjss2019.06.730
Citation: HONG Yu, WANG Guojun, SHI Jiankui, WANG Xiao, CHENG Zhengwei, WANG Zheng, SHANG Sheping. Response of Low-latitude Hainan Ionospheric Plasma Drifts to Geomagnetic Activities[J]. Journal of Space Science, 2019, 39(6): 730-737. doi: 10.11728/cjss2019.06.730

低纬(海南)电离层等离子体漂移对地磁活动的响应

doi: 10.11728/cjss2019.06.730
基金项目: 

国家自然科学基金项目(41674145和41574150)和国家重点实验室专项基金项目共同资助

详细信息
    作者简介:

    史建魁,E-mail:jkshi@nssc.ac.cn

  • 中图分类号: P352

Response of Low-latitude Hainan Ionospheric Plasma Drifts to Geomagnetic Activities

  • 摘要: 利用2003-2016年期间子午工程海南站(19.5°N,109.1°E)数字测高仪观测到的电离层等离子体漂移数据,分析了高低两种太阳活动条件下纬向和垂直向漂移对近磁静、中等磁扰和强磁扰三种地磁活动水平的响应特性.结果表明:日间纬向漂移各季节均以西向为主,随地磁活动无明显变化,白天日出附近和夜间漂移在各季节均以东向为主,随地磁活动增强而减弱,减弱程度在分季最大,在夏季最小;日间垂直漂移在零值附近变化,且不受地磁活动和季节影响,日落附近漂移仅在分季受到地磁活动的抑制,午夜前垂直漂移在分季受到抑制,在冬季因强磁扰而反向,夏季无明显规律,子夜至日出后垂直漂移在各季节随地磁活动增强而减小.与赤道区Jicamarca相比,两地漂移对地磁活动的响应相近,但在幅度和相位上存在差异,这可能是两地区的地理位置、背景电场和风场结构等不同造成的.

     

  • [1] KELLY M C. The Earth's Ionosphere:Plasma Physics and Electrodynamics[M]. 2nd ed. Amsterdam:Academic Press, 2009:247
    [2] SCHRIJVER C J, KAURISTIE K, AYLWARD A D, et al. Understanding space weather to shield society:a global road map for 2015-2025 commissioned by COSPAR and ILWS[J]. Adv. Space Res., 2015, 55(12):2745-2807
    [3] FARLEY D T. Early incoherent scatter observations at Jicamarca[J]. J. Atmos. Terr. Phys., 1991, 53(8):665-675
    [4] JENSEN J W, FEJER B G. Longitudinal dependence of middle and low latitude zonal plasma drifts measured by DE-2[J]. Ann. Geophys., 2007, 25(12):2551-2559
    [5] FEJER B G, DE PAULA E R, GONZALEZ S A, et al. Average vertical and zonal F region plasma drifts over Jicamarca[J]. J. Geophys. Res. Space Phys., 1991, 96(A8):13901-13906
    [6] WANG Xiao, SHI Jiankui, XIAO Zuo, et al. Low latitude ionospheric plasma drift features in China[J]. Chin. J. Radio Sci., 2005, 20(4):298-304(王霄, 史建魁, 肖佐, 等. 中国低纬(海南)电离层漂移特性[J]. 电波科学学报, 2005, 20(4):298-304)
    [7] WANG Xiao, SHI Jiankui, WU Shunzhi, et al. Analysis of ionospheric drifts to F10.7 response in Hainan[J]. Chin. J. Radio Sci., 2007, 22(3):370-374(王霄, 史建魁, 武顺智, 等. 海南地区电离层漂移对F10.7响应的分析研究[J]. 电波科学学报, 2007, 22(3):370-374)
    [8] CHEN Yanhong, HUANG Wengeng, GONG Jiancun, et al. Observations of ionospheric irregularity zonal velocity in Hainan[J]. Chin. J. Space Sci., 2008, 28(4):295-300(陈艳红, 黄文耿, 龚建村, 等. 海南地区电离层不规则体纬向漂移速度的观测和研究[J]. 空间科学学报, 2008, 28(4):295-300)
    [9] FEJER B G, LARSEN M F, FARLEY D T. Equatorial disturbance dynamo electric field[J]. Geophys. Res. Lett., 1983, 10(7):537-540
    [10] FORBES J M, LINDZEN R S. Atmospheric solar tides and their electrodynamic effects-I. The global Sq current system[J]. J. Atmos. Sol.:Terr. Phys., 1976, 38(9):897-910
    [11] RISHBETH H. The F-layer dynamo[J]. Planet. Space Sci., 1971, 19(2):263-267
    [12] BUONSANTO M J. Seasonal variations of day-time ionization flows inferred from a comparison of calculated and observed NmF2[J]. J. Atmos. Terr. Phys., 1986, 48(4):365-373
    [13] ONWUMECHILI A, OGBUEHI P O. Fluctuations in the geomagnetic horizontal field[J]. J. Atmos. Sol.:Terr. Phys., 1962, 24(3):173-190
    [14] FEJER B G. The equatorial ionospheric electric fields. A review[J]. J. Atmos. Terr. Phys., 1981, 43(5/6):377-386
    [15] FEJER B G, JENSEN J W, SU X Y. Quiet time equatorial F region vertical plasma drift model derived from ROCSAT-1 observations[J]. J. Geophys. Res. Space Phys., 2008, 113(A5):304-313
    [16] FEJER B G. F region plasma drifts over Arecibo:Solar cycle, seasonal, and magnetic activity effects[J]. J. Geophys. Res., 1993, 98(A8):13645-13652
    [17] HEELIS R A, COLEY W R. East-west ion drifts at mid-latitudes observed by Dynamics Explorer 2[J]. J. Geophys. Res. Space Phys., 1992, 97(A12):19461-19469
    [18] PARKINSON M L, POLGLASE R, FEHER B G, et al. Seasonal and magnetic activity variations of ionospheric electric fields above the southern mid-latitude station, Bundoora, Australia[J]. Ann. Geophys., 2001, 19(5):521-532
    [19] BLANC M, RICHMOND A D. Ionospheric disturbance dynamo[J]. J. Geophys. Res. Space Phys., 1980, 85(A4):1669-1686
    [20] GONZALES C A, KELLEY M C, FEJER B G, et al. Equatorial electric fields during magnetically disturbed conditions 2. Implications of simultaneous auroral and equatorial measurements[J]. J. Geophys. Res., 1979, 84 (A10):5803-5812
    [21] REINISCH B W, BUCHAU J, WEBER E J. Digital ionosonde observations of the polar cap F region convection[J]. Phys. Scripta, 1987, 36(36):372-377
    [22] SCALI J L, REINISCH B W, HEINSELMAN C J, et al. Coordinated digisonde and incoherent scatter radar F region drift measurements at SondreStromfjord[J]. Radio Sci., 1995, 30(5):1481-1498
    [23] BULLETT T W. Mid-latitude Ionospheric Plasma Drift:A Comparison of Digital Ionosonde and Incoherent Scatter Radar Measurements at Millstone Hill[D]. Lowell:University of Lowell, 1994
    [24] FEJER B G, PAULA E R D, BATISTA I S, et al. Equatorial F region vertical plasma drifts during solar maxima[J]. J. Geophys. Res. Space phys., 1989, 94(A9):12049-12054
    [25] PARKINSON M L, POLGLASE R, DYSON P L, et al. Electric field measurements at a southern mid-latitude station obtained using an HF digital ionosonde[J]. Adv. Space Res., 2001, 27(6-7):1253-1258
    [26] APONTE N, WOODMAN R F, SWARTZ W E, et al. Measuring ionosphere density, temperature, and drift velocities simultaneously at Jicamarca[J]. Geophys. Res. Lett., 1997, 24(22):2941-2944
    [27] REINISCH B W, SCALI J L, HAINES D L. Ionospheric drift measurements with ionosondes[J]. Ann. Geophys., 1998, 41(5/6):695-702
    [28] FEJER B G. The electrodynamics of the low-latitude ionosphere:Recent results and future challenges[J]. J. Atmos. Sol.:Terr. Phys., 1997, 59(13):1465-1482
    [29] HEDIN A E, SPENCER N W, KILLEEN T L. Empirical global model of upper thermosphere winds based on atmosphere and dynamics explorer satellite data[J]. J. Geophys. Res. Space Phys., 1998, 93(A9):9959-9978
    [30] EMMERT J T, FEJER B G, FESEN C G, et al. Climatology of middle- and low-latitude F region disturbance neutral winds measured by wind imaging interferometer (WINDII)[J]. J. Geophys. Res. Space Phys., 2001, 106(A11):24701-24712
    [31] FEJER B G. Low latitude electrodynamic plasma drifts:a review[J]. J. Atmos. Terr. Phys., 1991, 53(8):677-693
    [32] BUONSANTO M J, FOSTER J C. Effects of magnetospheric electric fields and neutral winds on the low-middle latitude ionosphere during the March 20-21, 1990 storm[J]. J. Geophys. Res. Atmos., 1993, 98(A11):19133-19140
    [33] RICHMONDA D, BLANC B, EMERY B A, et al. An empirical model of quiet-day ionospheric electric fields at middle and low latitudes[J]. J. Geophys. Res. Space Phys., 1980, 85(A09):4658-4664
    [34] ZHANG Qiwei, GUO Jianshan, ZHANG Gongliang. Morphology analysis of mid and low latitude ionospheric response to geomagnetic storm[J]. Chin. J. Space Sci., 1993, 13(4):262-269(张奇伟, 郭兼善, 章公亮. 磁暴期间中低纬电离层暴形态和物理机制分析[J]. 空间科学学报, 1993, 13(4):262-269)
    [35] FEJER B G, EMMERT J T, SHEPHERD G G, et al. Average daytime F region disturbance neutral winds measured by UARS:initial results[J]. Geophys. Res. Lett., 2000, 27(13):1859-1862
    [36] FULLER-ROWELL T J, CODRESCU M V, FEJER B G, et al. Dynamics of the low-latitude thermosphere:quiet and disturbed conditions[J]. J. Atmos. Terr. Phys., 1997, 59(13):1533-1540
    [37] SUN Wenjie, NING Baiqi, ZHAO Biqiang, et al. Analysis of ionospheric features in middle and low latitude region of China during the geomagnetic storm in March 2015[J]. Chin. J. Geophys., 2017, 60(1):1-10(孙文杰, 宁百齐, 赵必强, 等. 2015年3月磁暴期间中国中低纬地区电离层变化分析[J]. 地球物理学报2017, 60(1):1-10)
  • 加载中
计量
  • 文章访问数:  440
  • HTML全文浏览量:  16
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-22
  • 修回日期:  2019-09-27
  • 刊出日期:  2019-11-15

目录

    /

    返回文章
    返回