留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液态金属镓微重力下的融化传热特性

郭文华 彭浩 赵建福

郭文华, 彭浩, 赵建福. 液态金属镓微重力下的融化传热特性[J]. 空间科学学报, 2019, 39(6): 778-786. doi: 10.11728/cjss2019.06.778
引用本文: 郭文华, 彭浩, 赵建福. 液态金属镓微重力下的融化传热特性[J]. 空间科学学报, 2019, 39(6): 778-786. doi: 10.11728/cjss2019.06.778
GUO Wenhua, PENG Hao, ZHAO Jianfu. Melting Heat Transfer Characteristics of Liquid Metal as Phase Change Material under Microgravity[J]. Journal of Space Science, 2019, 39(6): 778-786. doi: 10.11728/cjss2019.06.778
Citation: GUO Wenhua, PENG Hao, ZHAO Jianfu. Melting Heat Transfer Characteristics of Liquid Metal as Phase Change Material under Microgravity[J]. Journal of Space Science, 2019, 39(6): 778-786. doi: 10.11728/cjss2019.06.778

液态金属镓微重力下的融化传热特性

doi: 10.11728/cjss2019.06.778
基金项目: 

上海市自然科学基金项目(19ZR1422300)和上海市青年东方学者人才计划项目(QD2016045)共同资助

详细信息
    作者简介:

    郭文华,E-mail:18817581602@163.com

    通讯作者:

    彭浩,E-mail:hpeng@shmtu.edu.cn

  • 中图分类号: V524;TK02

Melting Heat Transfer Characteristics of Liquid Metal as Phase Change Material under Microgravity

  • 摘要: 相变蓄热适用于周期性热流作用下航天器内部工作单元的温度控制,但是需解决微重力环境下相变材料融化速率低的问题.鉴于液态金属高导热系数和高单位体积潜热的特点,在微重力下将液态金属作为相变材料有望提高融化速率.通过对微重力下液态金属镓融化过程的相界面演化、流线和温度分布特征进行数值研究,分析了腔体尺寸和过热度对融化过程的影响.结果表明:微重力下镓的融化过程中,热传导起主导作用;镓的融化时间比冰和正十八烷分别减少了88.3%和96.4%,储热量分别为冰和正十八烷的1.2倍和2.2倍;融化时间随过热度增加而减小,随腔体半径增大而增大.此外推导出了液相分数随无量纲时间变化的关系.

     

  • [1] WANG Lei, JIAN Lujing. Application of phase change materials in spacecraft[J]. Spacec. Environ. Eng., 2013, 30(5):522-528(王磊, 菅鲁京. 相变材料在航天器上的应用[J]. 航天器环境工程, 2013, 30(5):522-528)
    [2] ZHU Fanglong. Numerical simulation of heat transfer for thermal protective clothing incorporating phase change material layer[J]. J. Basic Sci. Eng., 2011, 19(4):635-643(朱方龙. 附加相变材料层的热防护服装传热数值模拟[J]. 应用基础与工程科学学报, 2011, 19(4):635-643)
    [3] RUAN Shiting, ZHANG Jimin, CAO Jianguang, et al. Numerical simulation of melting process of phase change energy storage unit under microgravity[J]. J. Beijing Univ. Aeront. Astron., 2018, 44(10):2224-2231(阮世庭, 张济民, 曹建光, 等. 微重力下相变储能单元融化过程数值模拟[J]. 北京航空航天大学学报, 2018, 44(10):2224-2231)
    [4] MA Caixin, SHENG Qiang, TONG Tiefeng. Thermal design and simulation of a space phase change heat exchanger[J]. Chin. J. Space Sci., 2018, 38(3):409-417(麻才新, 盛强, 童铁峰. 一种空间相变换热器热设计与仿真分析及其改进[J]. 空间科学学报, 2018, 38(3):409-417)
    [5] ZHANG Jingchi, SHENG Qiang, REN Weijia, et al. Numerical simulation of thermal storage device of foam composite phase change material in microgravity[J]. Chin. J. Space Sci., 2016, 36(3):336-343(张靖驰, 盛强, 任维佳, 等. 微重力条件下泡沫复合相变材料蓄热装置数值仿真[J]. 空间科学学报, 2016, 36(3):336-343)
    [6] ZHAO Jianfu, HU Wenrui. Novel investigation on the principle of similarity for microgravity two-phase flow[J]. J. Basic Sci. Eng., 2002, 10(1):1-7(赵建福, 胡文瑞. 微重力两相流相似模拟准则新探[J]. 应用基础与工程科学学报, 2002, 10(1):1-7)
    [7] YANG Xiaohu, LIU Jing. Advanced liquid metal cooling:historical developments and research frontiers[J]. China Acad. J., 2018, 36(15):54-66(杨小虎, 刘静. 液态金属高性能冷却技术:发展历程与研究前沿[J]. 科技导报, 2018, 36(15):54-66)
    [8] GE Haoshan, LI Haiyan, MEI Shengfu, et al. Low melting point liquid metal as a new class of phase change material:an emerging frontier in energy area[J]. Renew. Sust. Energ. Rev., 2013, 21:331-346
    [9] YANG Xiaohu, TAN Sicong, LIU Jing. Numerical investigation of the phase change process of low melting point metal[J]. Int. J. Heat Mass Trans., 2016, 100:899-907
    [10] YANG Xiaohu, TAN Sicong, DING Yujie, et al. Experimental and numerical investigation of low melting point metal based PCM heat sink with internal fins[J]. Int. Commun. Heat Mass Trans., 2017, 87:118-124
    [11] GE Haoshan, LIU Jing. Keeping smartphones cool with gallium phase change material[J]. J. Heat Trans., 2013, 135:1-5
    [12] ZHAO Jianfu, LU Yanghui, LI Zhendong, et al. Marangoni effect in subcooled nucleate pool boiling[J]. Chin. J. Space Sci., 2008, 28(2):159-163(赵建福, 鲁仰辉, 李震东, 等. 过冷核态池沸腾中的Marangoni效应[J]. 空间科学学报, 2008, 28(2):159-163)
    [13] ARICI M, TÜTÜNCÜ E, KAN M, et al. Melting of nanoparticle-enhanced paraffin wax in rectangular enclosure with partially active walls[J]. Int. J. Heat Mass Trans., 2017, 104:7-17
    [14] CHEN Chen, PENG Hao. Numerical simulation of solidification characteristics of graphene nanofluid as phase change material[J]. Chem. Ind. Eng. Prog., 2018, 37(2):681-688(陈晨, 彭浩. 石墨烯纳米流体相变材料蓄冷特性的数值模拟[J]. 化工进展, 2018, 37(2):681-688)
    [15] BERGMAN T L, KELLER J R. Combined buoyancy, surface tension flow in liquid matals[J]. Numer. Heat Trans., 1988, 13(1):49-63
    [16] MADRUGA S, MENDOZA C. Heat transfer performance and melting dynamic of a phase change material subjected to thermocapillary effects[J]. Int. J. Heat Mass Trans., 2017, 109:501-510
    [17] VOLLER V R, PRAKASH C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems[J]. Int. J. Heat Mass Trans., 1987, 30(8):1709-1719
    [18] HONG Yuxiang, YE Weibiao, DU Juan, et al. Solid-liquid phase-change thermal storage and release behaviors in a rectangular cavity under the impacts of mushy region and low gravity[J]. Int. J. Heat Mass Trans., 2019, 130:1120-1132
    [19] MADRUGA S, MISCHLICH G S. Melting dynamics of a Phase Change Material (PCM) with dispersed metallic nanoparticles using transport coefficients from empirical and mean field models[J]. Appl. Therm. Eng., 2017, 124:1123-1133
    [20] BECKERMANN C, VISKANTA R. Effect of solid subcooling on natural convection melting of a pure metal[J]. Trans. ASME, 1989, 111:416-424
    [21] SHATIKIAN V, ZISKIND G, LETAN R. Numerical investigation of a PCM-based heat sink with internal fins[J]. Int. J. Heat Mass Trans., 2005, 48:3689-3706
  • 加载中
计量
  • 文章访问数:  686
  • HTML全文浏览量:  10
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-12
  • 修回日期:  2019-09-30
  • 刊出日期:  2019-11-15

目录

    /

    返回文章
    返回