留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米材料辐射效应研究现状

甄小娟 黄一凡 杨生胜 冯展祖 把得东 王俊 庄建宏 银鸿

甄小娟, 黄一凡, 杨生胜, 冯展祖, 把得东, 王俊, 庄建宏, 银鸿. 碳纳米材料辐射效应研究现状[J]. 空间科学学报, 2019, 39(6): 787-799. doi: 10.11728/cjss2019.06.787
引用本文: 甄小娟, 黄一凡, 杨生胜, 冯展祖, 把得东, 王俊, 庄建宏, 银鸿. 碳纳米材料辐射效应研究现状[J]. 空间科学学报, 2019, 39(6): 787-799. doi: 10.11728/cjss2019.06.787
ZHEN Xiaojuan, HUANG Yifan, YANG Shengsheng, FENG Zhanzu, BA Dedong, WANG Jun, ZHUANG Jianhong, YIN Hong. Irradiation Effects on Nano Carbon Materials[J]. Journal of Space Science, 2019, 39(6): 787-799. doi: 10.11728/cjss2019.06.787
Citation: ZHEN Xiaojuan, HUANG Yifan, YANG Shengsheng, FENG Zhanzu, BA Dedong, WANG Jun, ZHUANG Jianhong, YIN Hong. Irradiation Effects on Nano Carbon Materials[J]. Journal of Space Science, 2019, 39(6): 787-799. doi: 10.11728/cjss2019.06.787

碳纳米材料辐射效应研究现状

doi: 10.11728/cjss2019.06.787
基金项目: 

国家自然科学基金青年基金项目(11605079)和特殊功能材料与结构设计教育部重点实验室项目(B类,Lzujbky-2019-kb06)共同资助

详细信息
    作者简介:

    甄小娟,E-mail:312676073@qq.com

  • 中图分类号: V45

Irradiation Effects on Nano Carbon Materials

  • 摘要: 碳纳米管(CNTs)和石墨烯是碳纳米材料中新兴的两种类型,因其优异的电学、热学、机械等性能,是目前航天工程中具有很大应用前景的材料.在复杂的空间环境中,辐射效应对材料的结构和性能具有重要影响,是决定其稳定性和适应性的关键因素之一.本文对碳纳米管和石墨烯材料的电子、离子等辐射效应研究现状进行了讨论分析,对辐射过程中缺陷的产生和类型、辐射在材料制备以及功能化改性修饰方面的应用、辐射对器件性能的影响以及空间适应性进行了分析,简述了以碳纳米材料为基础的复合材料的辐射效应以及辐射缺陷对材料性能影响的作用机制,提出了目前碳纳米管和石墨烯辐射效应研究中仍需要开展的工作,并对其在空间科学中的应用进行了展望.

     

  • [1] CHENG Weiping. Development of PAN-based carbon fibers in aerospace[J]. Aerosp. Mater. 5 Technol., 2015, 6:11-16
    [2] ZHAO Dongmei, LI Zhenwei, LIU Lingdi, et al. Progress of preparation and application of graphene/carbon nanotube composite materials[J]. Acta. Chem. Sin., 2014, 72:185-200
    [3] IIJIMA S, ICHIHASHI T. Single-shell carbon nanotubes of 1 nm diameter[J]. Nature, 1993, 363(6430):603-605
    [4] WANG Ce. The Study of Preparation and Properties for Carbon Nanotubes Composites[D]. Lanzhou:Lanzhou University, 2008
    [5] LIU Yuanpeng. Studies on Wrinkling Behaviour and Mechanical Property of Wrinkled Graphene[D]. Harbin:Institute of Technology, 2014
    [6] NOVOSELOV K S, FALKOL V I, COLOMBO, et al. A road map for graphene[J]. Nature, 2012, 490:192-200
    [7] MEYER M, JOHNSON L, PALASZEWSKI B, et al. NASA technology roadmap:In-space propulsion systems[J]. Natl. Aeronaut. Space Adm., 2012. DOI: http://ntrs.nasa.gov/search.jsp?R=20110005503
    [8] GAO Hong, XING Yan, LIU Botian, et al. Progress of nanotechnology research in NASA[J]. Spacecraft Environ. Eng., 2016, 33(5):562-569
    [9] LIU Yuming, LIU Xiangpeng, TONG Jingyu, et al. Real-time detection of space atomic oxygen based on carbon nanotube gas sensor[J]. Spacecraft Environ. Eng., 2013, 30(3):230-234
    [10] LIU Yuming, LI Man, LIU Xiangpeng, et al. Effect of atomic oxygen on electric properties of graphene films[J]. J. Mater. Eng., 2017, 8:9-13
    [11] ZHANG H J, REN S M, PU J B, et al. Barrier mechanism of multilayers graphene coated copper against atomic oxygen irradiation[J]. Appl. Surf. Sci., 2018, 444:28-35
    [12] LI Z H, CHEN S Y, NAMBIAR S, et al. PMMA/MWCNT nanocomposite for proton radiation shielding applications[J]. Nanotechnology, 2016, 27(23):10
    [13] EMILIE J S. Graphene in the sky and beyond[J]. Nat. Nanotechnol., 2014, 9:745-747
    [14] TAO Hongren, LIU Siqing, LIN Ruilin, et al. Central radiation model of proton radiation belt[J]. Chin. J. Space Sci., 2015, 35(3):293-305
    [15] FANG Haowei. Investigation on Free Radical Evolution and Optical Degeneration of PI under Combined Irradiation[D]. Harbin:Harbin Institute of Technology, 2014
    [16] ZHAO Lei. In Partial Fulfillment of the Requirements[D]. Dalian:Dalian Maritime University, 2016
    [17] SHEN Zicai. Space Radiation Environment Engineering[M]. Beijing:China Aerospace Publishing House, 2013:120-146
    [18] ELISABETH A, TILMAN S, STEFAN K, et al. Electrical behavior of carbon nanotubes under low-energy proton irradiation[J]. J. Nucl. Mater., 2017, 495:299-305
    [19] KRASHENINNIKOV A V, NORDLUND K. Ion and electron irradiation-induced effects in nanostructured materials[J]. J. Appl. Phy., 2010, 107(7):1-36
    [20] WU X, MU F W, WANG Y H, et al. Application of atomic simulation methods on the study of graphene nanostructure fabrication by particle beam irradiation:a review[J]. Comp. Mater. Sci., 2018, 149:98-106
    [21] PENG H B, SUN M L, ZHANG D F, et al. Raman spectroscopy of graphene irradiated with highly charged ions[J]. Surf. Coat. Tech., 2016, 306:171-175
    [22] KIRAN J, JINDAL V K, BHARADWAJ L M, et al. Damaged carbon nanotubes get healed by ion irradiation[J]. J. Appl. Phy., 2010, 108:034302
    [23] LIU H, YUAN Y P, SHANG Y T, et al. Structural changes and electrical properties of nanowelded multiwalled carbon nanotube junctions[J]. Appl. Opt., 2018, 57:7435-7439
    [24] KUMARI R, TYAGI P K, PURI N K, et al. Electron irradiation induced wall-to-wall joining of multiwalled carbon nanotubes[J]. Appl. Surf. Sci., 2018, 453:153-158
    [25] KOTAKOSHI J, MEYER J C, KURASCH S, et al. Stone-Wales-type transformations in carbon nanostructures driven by electron irradiation[J]. Phys. Rev., 2011, 83(24):1-6
    [26] BANHART F, LI J X, KRASHENINNIKOV A V, et al. Carbon nanotubes under electron irradiation:stability of the tubes and their action as pipes for atom transport[J]. Phys. Rev. B, 2005, 71(24):1-4
    [27] CHANG S Q, LI J, HAN W, et al. Fabrication and high radiation-resistant properties of functionalized carbon nanotube reinforced novolac epoxy resin nanocomposite coatings[J]. RSC Adv., 2016, 6(63):58296-58301
    [28] RUI E, YANG J Q, LI X J, et al. Change of surface morphology and structure of multi-walled carbon nanotubes film caused by proton irradiation with 170keV[J]. Appl. Surf. Sci., 2013, 287:172-177
    [29] ANTONIO V, MACRO V, NICOLETTA D, et al. A conductive surface coating for Si-CNT radiation detectors[J]. Nucl. Instrum. Methods Phys. Res. A, 2015, 790:14-18
    [30] ELSEHLY E M, CHECHENIN N G, MAKUNIN A V, et al. Enhancement of CNT-based filters efficiency by ion beam irradiation[J]. Rad. Phys. Chem., 2018, 146:19-25
    [31] KYATSANDRA S, WILKINS R. Total ionizing dose X-ray radiation effects on MWCNT/PMMA thin film composites[J]. IEEE Trans. Nanotech., 2015, 14(1):152-158
    [32] GIGAX J G, BRADFORD P D, SHAO L. Radiation-induced mechanical property changes of CNT yarn[J]. Nucl. Instrum. Methods Phys. Res. B, 2017, 409:268-271
    [33] DENG J H, HOU X G, CHENG L, et al. Irradiation damage determined field emission of ion irradiated carbon nanotubes[J]. Appl. Mater. Inter., 2014, 6:5137-5143
    [34] RIUS G, VERDAGUER A, CHAVES F A, et al. Characterization at the nanometer scale of local electron beam irradiation of CNT based devices[J]. Microelec. Eng., 2008, 85:1413-1416
    [35] CHEN Y, ZHAO H Y, WU Y Y, et al. Effects of proton irradiation on structures and photo-catalytic property of Nano-TiO2/CNTs films[J]. Rad. Phys. Chem., 2018, 153:79-85
    [36] YAN L, ZHOU G Y, ISHAP A, et al. Improving the electrical conductivity of multi-walled carbon nanotube networks by H ion beam irradiation[J]. Carbon, 2011, 49:2141-2161
    [37] GU J J, HUANG L R, SHI W Q, et al. Atomic simulations of effect on thermal conductivity of ion-irradiated grapheme[J]. Phys. B:Condens. Mat., 2019, 554:40-44
    [38] LI W S, WANG X W, ZHANG X T, et al. Mechanism of the defect formation in supported graphene by energetic heavy ion irradiation:the substrate effect[J]. Sci. Rep., 2015, 5(9935).DOI: 10.1038/srep09935
    [39] YANG G, KIN B, KIN K, et al. Energy and dose dependence of proton-irradiation damage in graphene[J]. RSC Adv., 2015, 5:31861-31865
    [40] ILYIN A M, GUSEINOV N R, NEMKAEVA R R, et al. Bridge-like radiation defects in few-layer graphene[J]. Nucl. Instrum. Methods Phys. Res. B, 2013, 315:192-196
    [41] WU X, ZHAO H Y, YAN D, et al. Doping of graphene using ion beam irradiation and the atomic mechanism[J]. Comp. Mater. Sci., 2017, 129:184-193
    [42] ÅHLGREN E H, KOTAKOSKI J, LEHTINEN O, et al. Ion irradiation tolerance of graphene as studied by atomistic simulations[J]. Appl. Phys. Lett., 2012, 100(23):1-4
    [43] FISCHBEIN M D, DRNDIC M. Electron beam nanosculpting of suspended graphene sheets[J]. Appl. Phys. Lett., 2008, 93:107-113
    [44] KIM K J, CHOI J, LEE H, et al. Effects of 1MeV electron beam irradiation on multilayer graphene grown on 6H-SiC[J]. J. Phys. Chem. C, 2008, 112:13062-13064
    [45] WU K H, CHENG H H, MOHAMMAD A A, et al. Electron-beam writing of deoxygenated micro-patterns on graphene oxide film[J]. Carbon, 2015, 95:738-745
    [46] FEMI O J D, YAO K, ROCCAPRIORE K, et al. Effects of high-dosage focused electron-beam irradiation at energies ≤ 30keV on graphene on SiO2[J]. Appl. Surf. Sci., 2019, 469:325-330
    [47] DUME L F, FENG C F, HE L, et al. Tuning the grade of graphene:gamma ray irradiation of free-standing graphene oxide films in gaseous phase[J]. Appl. Surf. Sci., 2014, 322:126-135
    [48] MALINSKY P, GUTRONEO M, MACKOVA A, et al. Graphene oxide layers modified by irradiation with 1.2MeV He+ Ions[J]. Surf. Coat. Tech., 2018, 342:220-225
    [49] JWAN K, MIRA P, HYEK S, et al. Easy preparation and characterization of graphene using liquid nitrogen and electron beam irradiation[J]. Mater. Lett., 2015, 149:15-17
    [50] OLEJNICZAK A, NEBOGATIKOVA N A, FROLOV A V. Swift heavy-ion irradiation of Graphene Oxide:Localized reduction and formation of sp-hybridized carbon chains[J]. Carbon, 2019, 141:390-399
    [51] SLOBODIAN O M, TIAGULSKYI, NIKOLENKO A S, et al. Micro-raman spectroscopy and electrical conductivity of graphene layer on SiO2 dielectric subjected to electron beam irradiation[J]. Mater. Res. Express., 2018, 5:1-11
    [52] FERRARI A C, BASKO D M. Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nat. Nanotechnol., 2013, 8(4):235-246
    [53] CANCADO L G, JORIO A, MARTINES E H, et al. Quantifying defects in graphene via Raman spectroscopy at different excitation energies[J]. Nano. Lett., 2011, 11:3190-3196
    [54] COMPAGNINI G, GIANNAZZO F, SONDE S, et al. Ion irradiation and defect formation in single layer grapheme[J]. Carbon, 2009, 47:3201-3207
    [55] GUPTA S, HEINTZMAN E, JASINSKI J. Nanocarbon hybrids of graphene-based materials and ultradispersed diamond:investigating structure and hierarchical defects evolution with electron-beam irradiation[J]. J. Raman Spectrosc., 2015, 46:509-523
    [56] TEWELDEBRHAN D, BALANDIN A A. Modification of graphene properties due to electron-beam irradiation[J]. Appl. Phys. Lett., 2009, 94(1):1-3
    [57] MATHEW S, CHAN T K, ZHAN D, et al. Mega-electron-volt proton irradiation on supported and suspended graphene:a Raman spectroscopic layer dependent study[J]. J. Appl. Phy., 2011, 110(8):1-9
    [58] ANASTASI A A, VALSESIB A, COLPO P, et al. Raman spectroscopy of gallium ion irradiated grapheme[J]. Diam. Relat. Mater., 2018, 89:163-173
    [59] GU J J, HUANG L, SHI W Q. Atomic simulations of effect on thermal conductivity of ion-irradiated grapheme[J]. Phy. B:Condens. Mat., 2019, 554:40-44
    [60] TYAGI C, KHAN S A, OJHA S, et al. Effect of carbon ion-beam irradiation on Graphene Oxide film[J]. Vacuum, 2018, 154:259-263
    [61] TYAGI T, LAKSHMI G B V S, KUMAR S, et al. Structural changes in Graphene Oxide thin film by electron-beam irradiation[J]. Nucl. Instrum. Meth. Phys. Res. B, 2016, 379:171-175
    [62] CHILDRES I, JAUREGUI L A, FOXE M, et al. Effect of electron-beam irradiation on graphene field effect devices[J]. Appl. Phys. Lett., 2010, 97(17):1-3
    [63] LEE S, SEO J, HONG J, et al. Proton irradiation energy dependence of defect formation in grapheme[J]. Appl. Sur. Sci., 2015, 344:52-56
    [64] GUO L, CAO S Z, WANG L X. Electron beam irradiation of fluorinated grapheme[J]. Inter. J. Mod. Phys. B, 2017, 3132:5
    [65] LIU X, PU J, WANG L, et al. Novel DLC/ionic liquid/graphene nanocomposite coatings towards high-vacuum related space applications[J]. J. Mater. Chem. A, 2013, 1:3797-3809
    [66] FAN X Q, WANG L P. Graphene with outstanding anti-irradiation capacity as multialkylated cyclopentanes additive toward space application[J]. Sci. Rep., 2015, 5(1):1-12
    [67] JIN Y K, YEONG H G, JIN Y, et al. An effects of proton irradiation on graphene-based supercapacitors[J]. Mater. Res., 2018, 6(1).DOI: 10.1088/2053-1591/aae46e
    [68] KUMAR S, KUMAR A, TRIPATHI A, et al. Engineering of electronic properties of single layer graphene by swift heavy ion irradiation[J]. J. Appl. Phys., 2018, 123:161533
    [69] LIU P, QI W, AN W Z, et al. The changes of absorption and catalytic capacity on reduced graphene oxide after electron beam irradiation[J]. Nano, 2015, 10:8
    [70] KWONA K J, CHOA H Y, NA H G, et al. Improvement of gas sensing behavior in reduced Graphene Oxides by electron-beam irradiation[J]. Sensor. Actuat. B, 2014, 203:143-149
    [71] KAUSHIK P D, IVANOV G, LIN P C, et al. Surface functionalization of epitaxial graphene on SiC by ion irradiation for gas sensing application[J]. Appl. Surf., Sci., 2017, 403:707-716
    [72] VOITSIHOVSKA O O, RUDENKO R M, POVARCHUK V Y, et al. The effect of electron irradiation on the electrical properties of reduced graphene oxide paper[J]. Mater. Lett., 2019, 236:334-336
    [73] LOEBLEIN M, BOLKER A, TSANG S H, et al. 3D graphene-infused polyimide with enhanced electrothermal performance for long-term flexible space applications[J]. Small, 2015, 11:6425-6434
    [74] BHARTI M L, DUTT S, RATURI R, et al. Structural modifications of PMMA and PMMA/CNT matrix by swift heavy ions irradiation[J]. Mater. Sci. Eng., 2017, 225:1-8
  • 加载中
计量
  • 文章访问数:  665
  • HTML全文浏览量:  3
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-19
  • 修回日期:  2019-09-09
  • 刊出日期:  2019-11-15

目录

    /

    返回文章
    返回