留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SZ-5 Cabin's Height Changes during Three Super-storms in 2003

HUANG Cong LIU Dandan GUO Jing ZHANG Xiaoxin

HUANG Cong, LIU Dandan, GUO Jing, ZHANG Xiaoxin. SZ-5 Cabin's Height Changes during Three Super-storms in 2003[J]. 空间科学学报, 2019, 39(6): 809-815. doi: 10.11728/cjss2019.06.809
引用本文: HUANG Cong, LIU Dandan, GUO Jing, ZHANG Xiaoxin. SZ-5 Cabin's Height Changes during Three Super-storms in 2003[J]. 空间科学学报, 2019, 39(6): 809-815. doi: 10.11728/cjss2019.06.809
HUANG Cong, LIU Dandan, GUO Jing, ZHANG Xiaoxin. SZ-5 Cabin's Height Changes during Three Super-storms in 2003[J]. Journal of Space Science, 2019, 39(6): 809-815. doi: 10.11728/cjss2019.06.809
Citation: HUANG Cong, LIU Dandan, GUO Jing, ZHANG Xiaoxin. SZ-5 Cabin's Height Changes during Three Super-storms in 2003[J]. Journal of Space Science, 2019, 39(6): 809-815. doi: 10.11728/cjss2019.06.809

SZ-5 Cabin's Height Changes during Three Super-storms in 2003

doi: 10.11728/cjss2019.06.809
基金项目: 

Supported by the Natural Science Foundation of China (41574178, 41874187, 41774152, 41774195) and Grant from CAS Key Laboratory of Geospace Environment, University of Science and Technology of China

详细信息
    作者简介:

    HUANG Cong,E-mail:huangc@cma.gov.cn

    通讯作者:

    LIU Dandan,E-mail:liudd@cma.gov.cn

  • 中图分类号: V556

SZ-5 Cabin's Height Changes during Three Super-storms in 2003

Funds: 

Supported by the Natural Science Foundation of China (41574178, 41874187, 41774152, 41774195) and Grant from CAS Key Laboratory of Geospace Environment, University of Science and Technology of China

More Information
    Author Bio:

    HUANG Cong,E-mail:huangc@cma.gov.cn

  • 摘要: In this work, the daily height variations of SZ-5 (Shenzhou-5) cabin from 22 October to 28 November in 2003 are analyzed, which includes the period of the Halloween Storm and the Great November Storm. The significant orbital decays have been observed at the end of October and in late November due to the great solar flares and the severe geomagnetic storms. According to the equation of the air-drag-force on a spacecraft and the SZ-5 orbital decay information, the relative daily average thermospheric density changes during the three 2003 super-storms are derived and the results are compared with the Naval Research Laboratory Mass Spectrometer Incoherent Scatter Radar Extended Model (NRLMSISE-00). The results show that the daily average thermospheric density (at the altitude of SZ-5, about 350 km) in storm time enhances to approximately 200% as much as that in the quiet time but the empirical model may somewhat underestimate the average thermospheric density changes and the daily contributions of geomagnetic storms to the density enhancements during these severe space weather events.

     

  • [1] JACCHIA L G. Atmospheric Models in a Region from 110 to 2000 km, in CIRA 1972[M]. New York:Springer, 1972:227-338
    [2] ROEMER M. Recent Observational Results on the Thermosphere and Exosphere, in CIRA 1972[M]. New York: Springer, 1972:341-396
    [3] KNIPP D J, TOBISKA W K, EMERY B A. Direct and indirect thermospheric heating sources for solar cycles 21-23[J]. Sol. Phys., 2004, 224(1/2):495-505
    [4] CHUN F K, KNIPP D J, MCHARG M G, et al. Polar cap index as a proxy for hemispheric Joule heating[J]. Geophys. Res. Lett., 1999, 26(8):1101-1104
    [5] LIU H, LÜHR H. Strong disturbance of the upper thermospheric density due to magnetic storms:CHAMP observations[J]. J. Geophys. Res., 2005, 110(A9). DOI:10. 1029/2004ja010908
    [6] KIM K H, MOON Y J, CHO K S, et al. Atmospheric drag effects on the KOMPSAT-1 satellite during geomagnetic superstorms[J]. Earth Planets Space, 2006, 58(6):25-28
    [7] RHODEN E A, FORBES J M, MARCOS F A. The influence of geomagnetic and solar variabilities on lower thermosphere density[J]. J. Atmos. Terr. Phys., 2000, 62(11):999-1013
    [8] TAEUSCH D R, CARIGNAN G R, REBER C A. Neutral composition variation above 400 kilometers during a magnetic storm[J]. J. Geophys. Res., 1971, 76(34):8318-8325
    [9] MATUURA N. Theoretical models of ionospheric storms[J]. Space Science Reviews, 1972, 13(1). DOI:10. 1007/bf00198166
    [10] PRÖLSS G W. Magnetic storm associated perturbations of the upper atmosphere:recent results obtained by satellite-borne gas analyzers[J]. Rev. Geophys., 1980, 18(1): 183
    [11] PRÖLSS G W. Latitudinal structure and extension of the polar atmospheric disturbance[J]. J. Geophys. Res., 1981, 86(A4):2385
    [12] BREIG E L. Thermospheric ion and neutral composition and chemistry[J]. Rev. Geophys., 1987, 25(3):455
    [13] CROWLEY G. Dynamics of the Earth's thermosphere:a review[J]. Rev. Geophys., 1991, 29:1143-1165
    [14] FORBES J M, GONZALEZ R, MARCOS F A, et al. Magnetic storm response of lower thermosphere density[J]. J. Geophys. Res., 1996, 101(A2):2313-2319
    [15] FORBES J M, LU G, BRUINSMA S, et al. Thermosphere density variations due to the 15-24 April 2002 solar events from CHAMP/STAR accelerometer measurements[J]. J. Geophys. Res., 2005, 110. DOI:10.1029/ 2004JA010856
    [16] SUTTON E K, FORBES J M, NEREM R S. Global thermospheric neutral density and wind response to the severe 2003 geomagnetic storms from CHAMP accelerometer data[J]. J. Geophys. Res., 2005, 110. DOI:10.1029/ 2004JA010985
    [17] BRUINSMA S, FORBES J M, NEREM R S, et al. Thermosphere density response to the 20-21 November 2003 solar and geomagnetic storm from CHAMP and GRACE accelerometer data[J]. J. Geophys. Res., 2006, 111. DOI: 10.1029/2005JA011284
    [18] ZHOU Y L, MA S Y, LÜHR H, et al. An empirical relation to correct storm-time thermospheric mass density modeled by NRLMSISE-00 with CHAMP satellite air drag data[J]. Adv. Space Res., 2009, 43(5):819-828
    [19] LEI J H, THAYER J P, LU G, et al. Rapid recovery of thermosphere density during the October 2003 geomagnetic storms[J]. J. Geophys. Res., 2011, 116(A3). DOI: 10.1029/2010ja016164
    [20] XU J Y, WANG W B, LEI J, et al. The effect of periodic variations of thermospheric density on CHAMP and GRACE orbits[J]. J. Geophys. Res., 2011, 116(A2). DOI: 10.1029/2010ja015995
    [21] LEI J H, CHEN G M, XU J Y, et al. Impact of Solar Forcing on Thermospheric Densities and Spacecraft Orbits from CHAMP and GRACE[M]. In S. Jin (Ed.), Geodetic Sciences-Observations, Modeling and Applications:253-263, Intech Open Science, Croatia, 2013. DOI: 10.5772/56599
    [22] CHEN G M, XU J Y, WANG W X, et al. A comparison of the effects of CIR-and CME-induced geomagnetic activity on thermospheric densities and spacecraft orbits:case studies[J]. J. Geophys. Res., 2012, 117. DOI: 10.1029/2012JA017782
    [23] CHEN G M, XU J Y, WANG W X, et al. A comparison of the effects of CIR-and CME-induced geomagnetic activity on thermospheric densities and spacecraft orbits: statistical studies[J]. J. Geophys. Res.:Space Phys., 2014, 119:7928-7939
    [24] PARK J, MOON Y J, KIM K H, et al. Comparison between the KOMPSAT-1 drag derived density and the MSISE model density during strong solar and/or geomagnetic activities[J]. Earth Planets Space, 2008, 60(6):601-606
    [25] CHEN H, LIU H, HANADA T. Storm-time atmospheric density modeling using neural networks and its application in orbit propagation[J]. Adv. Space Res., 2014, 53(3):558-567
    [26] MONTENBRUCK O, GILL E, LUTZE F. Satellite orbits: models, methods, and applications[J]. Appl. Mech. Rev., 2002, 55(2):B27
    [27] HEDIN A E. A revised thermospheric model based on mass spectrometer and incoherent scatter data:MSIS-83[J]. J. Geophys. Res., 1983, 88(A12):10170
    [28] HEDIN A E. MSIS-86 thermospheric model[J]. J. Geophys. Res., 1987, 92(A5):4649
    [29] HEDIN A E. Extension of the MSIS thermosphere model into the middle and lower atmosphere[J]. J. Geophys. Res., 1991, 96(A2):1159-1172
    [30] PICONE J M, HEDIN A E, DROB D P, et al. NRLMSISE-00 empirical model of the atmosphere:statistical comparisons and scientific issues[J]. J. Geophys. Res., 2002, 107(A12):1468
    [31] SUTTON E K, FORBES J M, NEREM R S, et al. Neutral density response to the solar flares of October and November, 2003[J]. Geophys. Res. Lett., 2006, 33(L22101). DOI: 10.1029/2006GL027737
    [32] LIU H, LÜHR H, WATANABE S, et al. Contrasting behavior of the thermosphere and ionosphere in response to the 28 October 2003 solar flare[J]. J. Geophys. Res., 2007, 112(A07305). DOI: 10.1029/2007JA012313
    [33] LE H, LIU L, WAN W. An analysis of thermospheric density response to solar flares during 2001-2006[J]. J. Geophys. Res., 2012, 117(A03307). DOI: 10.1029/2011-JA017214
    [34] ZHOU Y L, MA S Y, LÜHR H, et al. Changes of thermospheric mass density and their relations with joule heating and ring current index during November 2003 superstorm-Champ observations[J]. Chin. J. Geophys., 2007, 50(4):856-865
    [35] LI Y P, ZHU G W, QIN G T, et al. Significant difference of the thermospheric density between the model and observation values of satellite during different geomagnetic storm events and different altitudes[J]. Chin. J. Geophys., 2014, 57(11):3703-3714
  • 加载中
计量
  • 文章访问数:  577
  • HTML全文浏览量:  13
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-05
  • 修回日期:  2019-05-10
  • 刊出日期:  2019-11-15

目录

    /

    返回文章
    返回