留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

某高空飞艇光学吊舱热状态及飞行策略研究

赵凯璇 庞乐 代善良 张学迅 罗海燕

赵凯璇, 庞乐, 代善良, 张学迅, 罗海燕. 某高空飞艇光学吊舱热状态及飞行策略研究[J]. 空间科学学报, 2019, 39(6): 831-837. doi: 10.11728/cjss2019.06.831
引用本文: 赵凯璇, 庞乐, 代善良, 张学迅, 罗海燕. 某高空飞艇光学吊舱热状态及飞行策略研究[J]. 空间科学学报, 2019, 39(6): 831-837. doi: 10.11728/cjss2019.06.831
ZHAO Kaixuan, PANG Le, DAI Shanliang, ZHANG Xuexun, LUO Haiyan. Thermal Analysis and Strategy of Optical Gondola under a Stratosphere Airship[J]. Journal of Space Science, 2019, 39(6): 831-837. doi: 10.11728/cjss2019.06.831
Citation: ZHAO Kaixuan, PANG Le, DAI Shanliang, ZHANG Xuexun, LUO Haiyan. Thermal Analysis and Strategy of Optical Gondola under a Stratosphere Airship[J]. Journal of Space Science, 2019, 39(6): 831-837. doi: 10.11728/cjss2019.06.831

某高空飞艇光学吊舱热状态及飞行策略研究

doi: 10.11728/cjss2019.06.831
基金项目: 

国家自然科学基金项目资助(41605014)

详细信息
    作者简介:

    赵凯璇,E-mail:zhao_kaixuan@126.com

  • 中图分类号: V11

Thermal Analysis and Strategy of Optical Gondola under a Stratosphere Airship

  • 摘要: 使用光学遥感设备开展地球大气层临边观测是研究中高层大气目标特性变化规律的重要手段之一.光学遥感设备的热状态对其光学精度及系统信噪比控制至关重要,能够直接影响观测数据质量乃至观测任务的实现.针对中高层大气OH自由基超分辨空间外差光谱仪在高空飞艇平台探测的热状态需求,分析了光谱仪吊舱的热环境,给出了光学吊舱的热平衡控制方程,并对上升/下降段和平飞段先后开展了热状态计算,得到光学吊舱在不同状态下的温度变化规律、光电部件的温度场等计算结果.结果表明热控方案能够满足光谱仪的热状态需求.根据热状态分析计算结果,制定了飞行前后及飞行过程中光学吊舱的热控策略.本文分析方法和飞行策略可为同类飞行设备热控状态设计及研究提供数据参考.

     

  • [1] ZHANG Honghai, GAO Yibo, LI Chao, et al. Simulation of limb measurements for mesospheric hydroxyl radical based on SHS detector[J]. Spectrosc. Spect. Anal., 2017, 37(09):2685-2691(张洪海, 高一博, 李超, 等. 针对SHS探测仪的中高层OH自由基临边观测仿真研究[J]. 光谱学与光谱分析, 2017, 37(09):2685-2691)
    [2] CHRISTOPH R E, MICHAEL H S, DAVID E S, et al. The Spatial Heterodyne Imager for Mesospheric Radicals(SHIMMER) on STPSat-1[J]. J, Geophys. Res., 2010, 115(D20).DOI: 10.1029/2010JD014398
    [3] GASKIN J A, SMITH I S, JONES W V. Introduction to the special issue on scientific balloon capabilities and instrumentation[J]. J. Astron. Instrum., 2014, 3(3):1403001
    [4] IRA S S, MICHAEL L. LTA-12:HALE Airship Technologies and Operation[R]. Belfast:AIAA, 2007
    [5] BRIAN F O. Thermal Control of the Balloon-Borne Telescope HEROES[R]. Reston:AIAA, 2013
    [6] SOLER J D, ADE P A R, ANGILÈ F E, et al. Thermal design and performance of the balloon-borne large aperture submillimeter telescope for polarimetry BLASTPol[J]. Proc. SPIE, 2014, 9145:914534-914534-18
    [7] ISABEL P G, ANGEL S A, NIKOLAI B, et al. Thermal Problems Associated to the Ascent Phase of Stratospheric Balloon Payloads the SUNRISE Mission[R]. Germany:ESA SP-671, 2009
    [8] LUO Haiyan, FANG Xuejing, HU Guangxiao, et al. Hyper-resolution spatial heterodyne spectrometer for hydroxyl radical OH[J]. Acta Agron. Sin., 2018, 38(6):0630003(罗海燕, 方雪静, 胡广骁, 等. 中高层大气OH自由基超分辨空间外差光谱仪[J]. 光学学报, 2018, 38(6):0630003)
    [9] SUN Kangwen, YANG Qinzhen, YANG Yang. Numerical simulation and thermal analysis of stratospheric airship[J]. Proc. Eng., 2015, 99:763-772
    [10] ISABEL P G, ANGEL S A, NIKOLAI B, et al. Transient thermal analysis during the ascent phase of a balloon-borne payload Comparison with SUNRISE test flight measurements[J]. Appl. Therm. Eng., 2009, 29(8-9):1507-1513
    [11] GILMORE D G. Spacecraft Thermal Control Handbook Volume I Fundamental Technologies[M]. 2nd ed. Washington DC:American Institute of Aeronautics and Astronautics, 2002:21-69
    [12] VARGA D, YOUNG E. Current status of a NASA high-altitude balloon-based observatory for planetary science[C]//AIAA Balloon Systems Conference, 2013.DOI: 10.2514/6.2015-3040
  • 加载中
计量
  • 文章访问数:  508
  • HTML全文浏览量:  11
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-18
  • 修回日期:  2019-04-15
  • 刊出日期:  2019-11-15

目录

    /

    返回文章
    返回