留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于FY-3C/MWHTS观测资料反演中低纬度海面气压

张子瑾 董晓龙

张子瑾, 董晓龙. 基于FY-3C/MWHTS观测资料反演中低纬度海面气压[J]. 空间科学学报, 2020, 40(3): 364-375. doi: 10.11728/cjss2020.03.364
引用本文: 张子瑾, 董晓龙. 基于FY-3C/MWHTS观测资料反演中低纬度海面气压[J]. 空间科学学报, 2020, 40(3): 364-375. doi: 10.11728/cjss2020.03.364
ZHANG Zijin, DONG Xiaolong. Sea Level Pressure Retrieval in Mid-to-low Latitude Regions Using FY-3C/MWHTS Data[J]. Journal of Space Science, 2020, 40(3): 364-375. doi: 10.11728/cjss2020.03.364
Citation: ZHANG Zijin, DONG Xiaolong. Sea Level Pressure Retrieval in Mid-to-low Latitude Regions Using FY-3C/MWHTS Data[J]. Journal of Space Science, 2020, 40(3): 364-375. doi: 10.11728/cjss2020.03.364

基于FY-3C/MWHTS观测资料反演中低纬度海面气压

doi: 10.11728/cjss2020.03.364
基金项目: 

国家重点研发计划项目资助(2017YFB0502800,2017YFB0502802)

详细信息
    作者简介:

    张子瑾,E-mail:zijin_nssc@163.com;董晓龙,E-mail:dongxiaolong@mirslab.cn

  • 中图分类号: P424

Sea Level Pressure Retrieval in Mid-to-low Latitude Regions Using FY-3C/MWHTS Data

  • 摘要: 利用风云三号C星(FY-3C)微波温湿探测仪(MWHTS)的实测亮温数据,开展了中低纬度(40°S-40°N)区域海面气压反演研究.MWHTS 118.75GHz氧气通道的辐射亮温测量值与氧气气柱总量密切相关,可用于反演海面气压.根据辐射传输方程分析了MWHTS 8个氧气通道对海面气压的敏感性.结果表明,与位于氧气吸收带中心的通道相比,位于吸收带翼区的探测通道对海面气压的变化更敏感.基于神经网络方法建立了中低纬度海面气压反演算法,通过将反演结果与ERA-Interim再分析数据以及原位观测数据进行对比分析,发现建立的反演算法在中低纬度晴空、云天、雨天条件下,对海面气压的估计精度分别为2.0,3.0和3.5hPa.最后,开展了生成初期热带气旋的反演试验,结果表明反演的海面气压资料对热带低压的判别有一定帮助.

     

  • [1] FLOWER D, PECKHAM G. A Microwave Pressure Sounder[M]. Pasadena CA:Jet Propulsion Laboratory, 1978
    [2] MA Leiming. A new approach to typhoon vortex initialization based on the dynamic retrieval of sea level pressure[J]. Acta Meteor. Sin., 2011, 69(6):978-989(马雷鸣. 基于海平面气压动力反演的台风涡旋初始化方法[J]. 气象学报, 2011, 69(6):978-989)
    [3] TU Xiaoping, XU Yinglong. Verification of TC track forecasting based on ECMWF mean sea level pressure field[J]. Meteor. Mon., 2010, 36:107-111(涂小萍, 许映龙. 基于ECMWF海平面气压场的热带气旋路径预报效果检验[J]. 气象, 2010, 36:107-111)
    [4] MIN Q, GONG W, LIN B, et al. Application of surface pressure measurements from O2-band differential absorption radar system in three-dimensional data assimilation on hurricane:Part I. An observing system simulation experiments study[J]. J. Quant. Spectrosc. Radiat. Transfer., 2015, 150:148-165
    [5] JIANG Qiongfei, GUO Shengli, LIANG Haowen, et al. Research of EASM decadal variation characteristics based on the EMD method and the relationship with solar activity[J]. Chin. J. Space Sci., 2015, 35(1):50-55(姜琼妃, 郭胜利, 梁浩文, 等. 基于EMD的东亚夏季风年代际变化特征及与太阳活动的关系[J]. 空间科学学报, 2015, 35(1):50-55)
    [6] TIAN Rongxiang. Solar effect on the relationship between tropical cyclone activity over the west of North Pacific and the stratospheric quasi-biennial oscillation[J]. J. Zhejiang Univ.:Sci. Edi., 2005, 32(3):350(田荣湘. 太阳活动、准两年振荡对西北太平洋热带气旋的影响[J]. 浙江大学学报:理学版, 2005, 32(3):350)
    [7] LI H, WANG C, HE S, et al. Plausible modulation of solar wind energy flux input on global tropical cyclone activity[J]. J. Atmos. Sol.:Terr. Phys., 2019, 192.DOI:10. 1016/j.jastp.2018.01.018
    [8] SHA Wenyu, CAI Jianping. Changes of Pacific and Indian ocean's SST, sea level pressure and their influence on cold summer in east China[J]. Acta Meteor. Sin., 1994, 52(1):117-120(沙文钰, 蔡剑平. 太平洋和印度洋表层水温、海平面气压变化关系及对东亚冷夏的影响[J]. 气象学报, 1994, 52(1):117-120)
    [9] ZHAO Qiaolian, LI Chongyin. Dipole mode of the sea level pressure anomalies in Asia-Pacific region and the relation to winter climate anomaly in China[J]. Clim. Environ. Res., 2012, 17(1):1-12(赵巧莲, 李崇银. 亚洲-太平洋地区冬季海平面气压异常偶极模与我国冬季气候异常的关系[J]. 气候与环境研究, 2012, 17(1):1-12)
    [10] HILBURN K A, BOURASSA M A, O'BRIEN J J. Development of scatterometer-derived surface pressures for the Southern Ocean[J]. J. Geophys. Res. Oceans., 2003, 108:3244
    [11] HSU C S, WURTELE M G, CUNNINGHAM G F, et al. Construction of marine surface pressure fields from scatterometer winds alone[J]. J. Appl. Meteor., 1997, 36:1249-1261
    [12] PATOUX J, BROWN R A. A gradient wind correction for surface pressure fields retrieved from scatterometer winds[J]. J. Appl. Meteor., 2002, 41:133-143
    [13] PATOUX J, FOSTER R C, BROWN R A. An evaluation of scatterometer-derived oceanic surface pressure fields[J]. J. Appl. Meteorol. Climatol., 2008, 47:835-852
    [14] ZHANG L, HUANG S, DU H. A new method of retrieving typhoon's sea level pressure fields and central positions from scatterometer-derived sea surface winds[J]. Acta. Phys. Sin., 2011, 609(11):119202
    [15] ELACHI C, VAN Zyl. Introduction to the Physics and Techniques of Remote Sensing (2ed.)[M]. Hoboken:John Wiley & Sons, 2006
    [16] MITCHELL R, O'BRIEN D. Error estimates for passive satellite measurement of surface pressure using absorption in the A band of oxygen[J]. J. Atmos. Sci., 1987, 44:1981-1990
    [17] LIN B, HU Y. Numerical simulations of radar surface air pressure measurements at O2 bands[J]. IEEE Geosci. Remote Sens. Lett., 2005, 2(3):324-328
    [18] HEALY S B. Surface pressure information retrieved from GPS radio occultation measurements[J]. Quart. J. Roy. Meteor. Soc., 2013, 139:2108-2118
    [19] HE J Y, ZHANG S W. Research on global profiles and precipitation retrievals for FY-3C MWHTS[C]//2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Milan:IEEE, 2015:4890-4893
    [20] ZHANG S, LI J, WANG Z, et al. Design of the second generation microwave humidity sounder (MWHS-II) for Chinese meteorological satellite FY-3[C]//2012 IEEE International Geoscience and Remote Sensing Symposium. Munich:IEEE, 2012:4672-4675
    [21] GUO Y, LU N M, QI C L, et al. Calibration and validation of microwave humidity and temperature sounder onboard FY-3C satellite[J]. Chin. J. Geophys., 2015, 58:20-31
    [22] HE Q R, WANG Z Z, HE J Y. Bias correction for retrieval of atmospheric parameters from the microwave humidity and temperature sounder onboard the Fengyun-3C satellite[J]. Atmosphere, 2016, 7:156
    [23] DEE D P, UPPALA S M, SIMMONS A J, et al. The ERA-Interim reanalysis:configuration and performance of the data assimilation system[J]. Quart. J. Roy. Meteor. Soc., 2011, 137:553-597
    [24] OFFICE M. Handbook of Meteorological Instruments (2ed.)[M]. London:HMSO, 1980
    [25] ULABY F T, LONG D G. Microwave Radar and Radiometric Remote Sensing[D]. Ann Arbor:The University of Michigan Press, 2014
    [26] LIEBE H, HUFFORD G. Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz[C]//Electromagnetic Wave Propagation Panel Symposium. Palma de Mallorca:Spain, 1993:1-11
    [27] ZHANG Z X. Remote sounding of atmospheric pressure profile from space, part 1:principle[J]. J. Appl. Remote Sens., 2010, 4:2840-2849
    [28] HUANG Jin, ZHANG Zhengqiang, ZHANG Yuzhe, et al. High-precision orbit prediction for high-altitude orbit satellite based on ANN model[J]. Chin. J. Space Sci., 2016, 36(1):83-91(黄金, 张正强, 张宇喆, 等. 基于神经网络模型的地球同步卫星高精度轨道预报[J]. 空间科学学报, 2016, 36(1):83-91)
    [29] TIAN Jianhua. Applications of BP neural networks in forecasting sunspot numbers for solar cycle 23[J]. Chin. J. Space Sci., 1997, 17(3):255-260(田剑华. 用BP神经网络预报模型预报太阳活动第23周的黑子数[J]. 空间科学学报, 1997, 17(3):255-260)
    [30] U.S. GEOLOGICAL SURVEY. Global land cover characteristics database vs. 1:[DB]. Greenbelt, MD:EROS Data Center Distributed Active Archive Center, 1997. http://edcdaac.usgs.gov/glcc/glcc.html
    [31] ANDERS U, KORN O. Model selection in neural networks[J]. Neural Networks, 1999, 12:309-323
    [32] MARZBAN C. Neural Networks for postprocessing model output:ARPS[J]. Mon. Weather Rev., 2003, 131:1103-1111
  • 加载中
计量
  • 文章访问数:  272
  • HTML全文浏览量:  0
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-28
  • 修回日期:  2019-10-18
  • 刊出日期:  2020-05-15

目录

    /

    返回文章
    返回