留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁暴期间中国中低纬电离层不规则体与扰动分析

梅登奎 闻德保

梅登奎, 闻德保. 磁暴期间中国中低纬电离层不规则体与扰动分析[J]. 空间科学学报, 2020, 40(6): 1007-1013. doi: 10.11728/cjss2020.06.1007
引用本文: 梅登奎, 闻德保. 磁暴期间中国中低纬电离层不规则体与扰动分析[J]. 空间科学学报, 2020, 40(6): 1007-1013. doi: 10.11728/cjss2020.06.1007
MEI Dengkui, WEN Debao. Analysis of Ionospheric Irregularities and Disturbances at Middle and Low Latitudes in China during the Magnetic Storm[J]. Journal of Space Science, 2020, 40(6): 1007-1013. doi: 10.11728/cjss2020.06.1007
Citation: MEI Dengkui, WEN Debao. Analysis of Ionospheric Irregularities and Disturbances at Middle and Low Latitudes in China during the Magnetic Storm[J]. Journal of Space Science, 2020, 40(6): 1007-1013. doi: 10.11728/cjss2020.06.1007

磁暴期间中国中低纬电离层不规则体与扰动分析

doi: 10.11728/cjss2020.06.1007
基金项目: 

国家自然科学基金项目资助(41674040)

详细信息
    作者简介:

    梅登奎,E-mail:mei_dk@163.com

    通讯作者:

    闻德保,E-mail:wdbwhigg@gzhu.edu.cn

  • 中图分类号: P352

Analysis of Ionospheric Irregularities and Disturbances at Middle and Low Latitudes in China during the Magnetic Storm

  • 摘要: 2017年9月8日发生了一次强磁暴,Kp指数最大值达到8.利用区域电离层格网模型(Regional Ionosphere Map,RIM)和区域ROTI(Rate of TEC Index)地图,分析了磁暴期间中国及其周边地区电离层TEC扰动特征和低纬地区电离层不规则体的产生与发展情况,同时利用不同纬度IGS(International GNSS Service)测站BJFS(39.6°N,115.9°E),JFNG(30.5°N,114.5°E)和HKWS(22.4°N,114.3°E)的GPS双频观测值,获取各测站的ROTI和DROT(Standard Deviation of Differential ROT)指数变化趋势.结果表明:此次磁暴发生期间电离层扰动先以正相扰动为主,主要发生在中低纬区域,dTEC(differential TEC)最大值达到14.9TECU,随后电离层正相扰动逐渐衰减,在低纬区域发生电离层负相扰动,dTEC最小值达到-7.2TECU;在12:30UT-13:30UT时段,中国南部低纬地区发生明显的电离层不规则体事件;相比BJFS和JFNG两个测站,位于低纬的HKWS测站的ROTI和DROT指数变化更为剧烈,这表明电离层不规则体结构存在纬度差异.

     

  • [1] LI Qiang, NING Baiqi, ZHAO Biqiang, et al. Applications of the CMONOC based GNSS data in monitoring and investigation of ionospheric space weather[J]. Chin. J. Geophys., 2012, 55(7):2193-2202(李强, 宁百齐, 赵必强, 等. 基于陆态网络GPS数据的电离层空间天气监测与研究[J]. 地球物理学报, 2012, 55(7):2193-2202)
    [2] HUANG Linfeng, TIAN Pengju, ZHAO Kai, et al. Temporal and spatial characteristics of the ionospheric scintillation event and the influence on communication in the northern EIA crest region[J]. Chin. J. Space Sci., 2019, 39(2):158-166. DOI:10.11728/cjss2019.02.158(黄林峰, 田鹏举, 赵凯, 等. 北驼峰区电离层GPS卫星闪烁事件时空特征及对通信的影响[J]. 空间科学学报, 2019, 39(2):158-166)
    [3] XU Jisheng, ZHU Jie, CHEN Guanghui. GPS observations of ionospheric effects of the major storm of Nov. 7-10, 2004[J]. Chin. J. Geophys., 2006, 49(4):848-855(徐继生, 朱劼, 程光晖. 2004年11月强磁暴期间武汉电离层TEC的响应和振幅闪烁特征的GPS观测[J]. 地球物理学报, 2006, 49(4):950-956)
    [4] HU Lianhuan, NING Baiqi, LI Guozhu, et al. Mult-instruments observation of low latitude ionospheric irregularities response to Oct 2010 storm[J]. Chin. J. Geophys., 2013, 56(2):365-373. DOI:10.6038/cjg20130201(胡连欢, 宁百齐, 李国主, 等. 暴时低纬电离层不规则体响应特征的多手段观测[J]. 地球物理学报, 2013, 56(2):365-373)
    [5] SHI Hao, ZHANG Donghe, HAO Yongqiang, et al. Modeling study of the effect of ionospheric scintillation at low latitudes in China[J]. Chin. J. Geophys., 2014, 57(3):691-702. DOI:10.6038/cjg20140301(侍颢, 张东和, 郝永强, 等. 中国低纬度地区电离层闪烁效应模式化研究[J]. 地球物理学报, 2014, 57(3):691-702)
    [6] ZHANG Donghe, XIAO Zuo. GU Shifen, et al. Observational study of ionospheric TEC during the magnetic storm on April 6-8, 2000[J]. Chin. J. Space Sci., 2002, 22(3):212-219(张东和, 肖佐, 古士芬, 等. 2000年4月6-8日磁暴期间电离层TEC观测研究[J]. 空间科学学报, 2002, 22(3):212-219)
    [7] XU J S, ZHU J, LI L. Effects of a major storm on GPS amplitude scintillations and phase fluctuations at Wuhan in China[J]. Adv. Space Res., 2007, 39(8):1318-1324
    [8] LI G Z, NING B Q, WAN W X, et al. Observations of GPS ionospheric scintillations over Wuhan during geomagnetic storms[J]. Ann. Geophys., 2006, 24(6):1581-1590
    [9] LI G Z, NING B Q, ZHAO B Q, et al. Effects of geomagnetic storm on GPS ionospheric scintillations at Sanya[J]. J. Atmos. Sol.: Terr. Phys., 2008, 70(7):1034-1045
    [10] SHANG S P, SHI J K, KINTNER P, et al. Response of Hainan GPS ionospheric scintillations to the different strong magnetic storm conditions[J]. Adv. Space Res., 2008, 41(4):579-586
    [11] LI Hongke, NING Baiqi, LI Guozhu. Observations on hundred meter-and meter-scale ionospheric irregularity drifts at low latitude[J]. Prog. Geophys., 2013, 28(2):545-553(郦洪柯, 宁百齐, 李国主. 不同尺度低纬电离层不规则体漂移特性的观测研究[J]. 地球物理学进展, 2013, 28(2):545-553)
    [12] SHANG Sheping, SHI Jiankui, WANG Zheng, et al. Analysis of the ionospheric irregularity events in the low latitude of East Asia based on multiple instruments[J]. Chin. J. Space Sci., 2018, 38(6):862-870(尚社平, 史建魁, 王铮, 等. 基于多种观测手段的东亚低纬电离层不规则体事件分析[J]. 空间科学学报, 2018, 38(6):862-870)
    [13] XIONG B, WAN W X, NING B Q, et al. Investigation of mid-and low-latitude ionosphere based on BDS, GLONASS and GPS observations[J]. Chin. J. Geophys., 2014, 57(11):3586-3599. DOI:10.6038/cjg20141112(熊波, 万卫星, 宁百齐, 等. 基于北斗, GLONASS和GPS系统的中低纬电离层特性联合探测[J]. 地球物理学报, 2014, 57(11):3586-3599)
    [14] CHERNIAK I, KRANKOWSKI A, ZAKHARENKOVA I. ROTI Maps: a new IGS ionospheric product characterizing the ionospheric irregularities occurrence[J]. GPS Solut., 2018, 22(3):69
    [15] WANG N B, LI Z S, YUAN Y B, et al. Monitoring of ionospheric irregularities with multi-GNSS observations: a new ionosphere activity index and product services[C]. EGU General Assembly Conference.Vienna: EGU, 2017:10642
    [16] SCHAER S. Mapping and predicting the Earth's ionosphere using the Global Positioning System[J]. Geod. Geophys. Arb. Schweiz, 1999, 59:59
    [17] JACOBSEN K S. The impact of different sampling rates and calculation time intervals on ROTI values[J]. J. Space WeatherSpace Clim., 2014, 4:A33
    [18] YAMAUCHI M, SERGIENKO T, ENELL C F, et al. Ionospheric response observed by EISCAT during the 6-8 September 2017 space weather event: Overview[J]. Space Weather, 2018, 16(9):1437-1450
  • 加载中
计量
  • 文章访问数:  350
  • HTML全文浏览量:  6
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-20
  • 修回日期:  2019-11-03
  • 刊出日期:  2020-11-15

目录

    /

    返回文章
    返回