留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁暴期间电离层电磁离子回旋波的地方时分布差异

孙璐媛 王慧 何杨帆

孙璐媛, 王慧, 何杨帆. 磁暴期间电离层电磁离子回旋波的地方时分布差异[J]. 空间科学学报, 2021, 41(2): 250-260. doi: 10.11728/cjss2021.02.250
引用本文: 孙璐媛, 王慧, 何杨帆. 磁暴期间电离层电磁离子回旋波的地方时分布差异[J]. 空间科学学报, 2021, 41(2): 250-260. doi: 10.11728/cjss2021.02.250
SUN Luyuan, WANG Hui, HE Yangfan. Local Time Differences in the Ionospheric Electromagnetic Ion Cyclotron Waves during Storm Timeormalsize[J]. Chinese Journal of Space Science, 2021, 41(2): 250-260. doi: 10.11728/cjss2021.02.250
Citation: SUN Luyuan, WANG Hui, HE Yangfan. Local Time Differences in the Ionospheric Electromagnetic Ion Cyclotron Waves during Storm Timeormalsize[J]. Chinese Journal of Space Science, 2021, 41(2): 250-260. doi: 10.11728/cjss2021.02.250

磁暴期间电离层电磁离子回旋波的地方时分布差异

doi: 10.11728/cjss2021.02.250
基金项目: 

国家自然科学基金项目资助(41974182,41431073)

详细信息
    作者简介:

    孙璐媛,E-mail:luyuansun@whu.edu.cn

  • 中图分类号: P353

Local Time Differences in the Ionospheric Electromagnetic Ion Cyclotron Waves during Storm Timeormalsize

  • 摘要: 利用Swarm卫星的高精度(50 Hz)磁场观测数据,对2015年3月16—25日磁暴期间中纬度电离层电磁离子回旋(EMIC)波时空分布特征进行了研究.结果表明:晨侧EMIC波事件数与昏侧大致相当,午前时段明显多于子夜前时段.昏侧EMIC波高发生率与等离子体羽状结构有关,晨侧EMIC波高发生率与太阳风动压增强及稠密冷等离子体有关.晨侧-正午前EMIC波频率高于昏侧-子夜前,表明源区位置以及离子成分占比存在地方时差异.昏侧事件大多发生在早期恢复相,晨侧事件大多发生在晚期恢复相,晨-昏两侧的时间差异源于磁暴期间高能离子西向漂移所需时间及等离子体层顶位置的地方时差异.磁暴期间,EMIC波以H+波和He+为主,其中H+波主要分布在06:00 MLT—10:00 MLT(磁地方时)扇区,He+波主要分布在18:00 MLT—22:00 MLT扇区.在磁暴主相期间没有出现H+带波,但是出现He+-O+双波段EMIC波,表明磁暴主相期间环电流高浓度氧离子对H+带EMIC波具有抑制作用.

     

  • [1] BORTNIK J, THORNE R M, OMIDI N, et al. Nonlinear evolution of EMIC waves in a uniform magnetic field:2. Test-particle scattering[J]. J. Geophys. Res., 2010, 115(A12):A12242
    [2] JORDANOVA V K, FARRUGIA C J, THORNE R M, et al. Modeling ring current proton precipitation by electromagnetic ion cyclotron waves during the May 14-16, 1997 storm[J]. J. Geophys. Res., 2001, 106(A1):7-22
    [3] THORNE R M, KENNEL C F. Relativistic electron precipitation during magnetic storm main phase[J]. J. Geophys. Res., 1971, 7(19):4446
    [4] ANDERSON B J, ERLANDSON R E, ZANETTI L J. A statistical study of Pc1s magnetic pulsations in the equatorial magnetosphere. I-Equatorial occurrence distributions. I!I. Wave properties[J]. J. Geophys. Res., 1992, 97(A3):3075-3088
    [5] FRASER B J, NGUYEN T S. Is the plasmapause a preferred source region of electromagnetic ion cyclotron waves in the magnetosphere[J]. J. Atmos. Sol:Terr. Phys., 2001, 63(11):1225-1247
    [6] MIN K, LEE J, KEIKA K, et al. Global distribution of EMIC waves derived from THEMIS observations[J]. J. Geophys. Res., 2012, 117(A5):A05219
    [7] ALLEN R C, ZHANG J C, KISTLER L M, et al. A statistical study of EMIC waves observed by Cluster:1. Wave properties[J]. J. Geophys. Res., 2015, 120(7):5574-5592
    [8] ANDERSON B J, HAMILTON D C. Electromagnetic ion cyclotron waves stimulated by modest magnetospheric compressions[J]. J. Geophys. Res., 1993, 98(A7):11369-11382
    [9] ARNOLDY R L, ENGEBRETSON M J, DENTON R E, et al. Pc 1 waves and associated unstable distributions of magnetospheric protons observed during a solar wind pressure pulse[J]. J. Geophys. Res., 2005, 110(A7):A07229
    [10] USANOVA M E, MANN I R, KALE Z C, et al. Conjugate ground and multisatellite observations of compression-related EMIC Pc1 waves and associated proton precipitation[J]. J. Geophys. Res., 2010, 115(A7):A07208
    [11] ENGEBRETSON M J, POSCH J L, CAPMAN N S S, et al. MMS, van allen probes, GOES 13, and ground-based magnetometer observations of EMIC wave events before, during, and after a modest interplanetary shock[J]. J. Geophys. Res., 2018, 123(10):8331-8357
    [12] KOZYRA J U, CRAVENS T E, NAGY A F, et al. Effects of energetic heavy ions on electromagnetic ion cyclotron wave generation in the plasmapause region[J]. J. Geophys. Res., 1984, 89(A4):2217-2233
    [13] BRÄYSY T, MURSULA K, MARKLUND G, et al. Ion cyclotron waves during a great magnetic storm observed by Freja double-probe electric field instrument[J]. J. Geophys. Res., 1998, 103(A3):4145-4155
    [14] LEE L C, KWOK Y C. A mechanism for the IPDP pilsations[J]. J. Geophys. Res., 1984, 89(A2):877-882
    [15] BLUM L W, MACDONALD E A, GARY S P, et al. Ion observations from geosynchronous orbit as a proxy for ion cyclotron wave growth during storm times[J]. J. Geophys. Res., 2009, 114(A10):A10214
    [16] HALFORD A J, FRASER B J, MORLEY S K, et al. EMIC wave activity during geomagnetic storm and nonstorm periods:CRRES results[J]. J. Geophys. Res., 2010, 115(A12):A12248
    [17] ENGEBRETSON M J, POSCH J L, WESTERMAN A M, et al. Temporal and spatial characteristics of Pc1 waves observed by ST5[J]. J. Geophys. Res., 2008, 113(A7):A07206
    [18] SAIKIN A A, ZHANG J C, SMITH C W, et al. The dependence on geomagnetic conditions and solar wind dynamic pressure of the spatial distributions of EMIC waves observed by the Van Allen Probes[J]. J. Geophys. Res., 2016, 121(5):43625
    [19] WANG D, YUAN Z, YU X, et al. Geomagnetic storms and EMIC waves:van allen probe observation[J]. J. Geophys. Res., 2016, 121(7):64447
    [20] KEIKA K, TAKAHASHI K, UKHORSKIY A Y, et al. Global characteristics of electromagnetic ion cyclotron waves:occurrence rate and its storm dependence[J]. J. Geophys. Res., 2013, 118(7):41357
    [21] MEREDITH N P, HORNE R B, KERSTEN T, et al. Global morphology and spectral properties of EMIC waves derived from CRRES observations[J]. J. Geophys. Res., 2014, 119(7):5328-5342
    [22] CHEN H, GAO X, LU Q, et al. Analyzing EMIC waves in the inner magnetosphere using long-term Van Allen probes observations[J]. J. Geophys. Res., 2019, 124(9):7402-7412
    [23] KASAHARA Y, SAWADA A, YAMAMOTO M, et al. Ion-Cyclotron emissions observed by the satellite akebono in the vicinity of the magnetic equator[J]. Radio. Sci., 1992, 27(2):347-362
    [24] SAIKIN A A, ZHANG J C, ALLEN R C, et al. The occurrence and wave properties of H+-, He+-, and O+-band EMIC waves observed by the Van Allen Probes[J]. J. Geophys. Res., 2015, 120(9):7477-7492
    [25] WANG H, HE Y, LÜHR H, et al. Storm time EMIC waves observed by swarm and van allen probe satellites[J]. J. Geophys. Res., 2019, 124(1):293-312
    [26] SAVITZKY A, GOLAY M J E. Smoothing and differentiation of data by simplifified least squares procedures[J]. Anal. Chem., 1964, 36(8):1627-1639
    [27] TSYGANENKO N A. Modeling the Earth's magnetospheric magnetic field confined within a realistic magnetopause[J]. J. Geophys. Res., 995, 100(A4):5599
    [28] TSYGANENKO N A. Effects of the solar wind conditions in the global magnetospheric configurations as deduced from data-based field models[A]. International Conference on Substorms, 1996, 389:181
    [29] FRASER B J, GREW R S, MORLEY S K, et al. Storm time observations of electromagnetic ion cyclotron waves at geosynchronous orbit:GOES results[J]. J. Geophys. Res., 2010, 115(A5):A05208
    [30] USANOVA M E, MANN I R, RAE I J, et al. Multipoint observations of magnetospheric compression-related EMIC Pc1 waves by THEMIS and CARISMA[J]. Geophys. Res. Lett., 2008, 35(17):L17S25
    [31] YUE C, JUN C W, BORTNIK J, et al. The relationship between EMIC wave properties and proton distributions based on Van Allen probes observations[J]. Geophys. Res. Lett., 2019, 46(8):4070-4078
    [32] OLSON J V, LEE L C. Pc1 wave generation by sudden impulses[J]. Planet. Space Sci., 1983, 31(3):295-302
    [33] LAVRAUD B, DENTON M H, THOMSEN M F, et al. Superposed epoch analysis of dense plasma access to geosynchronous orbit[J]. Ann. Geophys., 2005, 23(7):2519-2529
    [34] ANDRE M, YAU A. Theories and observations of ion energization and outflow in the high latitude magnetosphere[J]. Space Sci. Rev., 1997, 80(1-2):27-48
    [35] KIM H, HWANG J, PARK J, et al. Large-scale ducting of Pc1 pulsations observed by swarm satellites and multiple ground networks[J]. Geophys. Res. Lett., 2018, 45(23):12703-12712
    [36] USANOVA M E, MANN I R, BORTNIK J, et al. THEMIS observations of electromagnetic ion cyclotron wave occurrence:dependence on AE, SYM-H, and solar wind dynamic pressure[J]. J. Geophys. Res., 2012, 117(A10):A10218
    [37] TETRICK S S, ENGEBRETSON M J, POSCH J L, et al. Location of intense electromagnetic ion cyclotron (EMIC) wave events relative to the plasmapause:Van Allen Probes observations[J]. J. Geophys. Res., 2017, 122(4):4064-4088
    [38] KIM K H, SHIOKAWA K, MANN I R, et al. Longitudinal frequency variation of long-lasting EMIC Pc1——Pc2 waves localized in the inner magnetosphere[J]. Geophys. Res. Lett., 2016, 43(3):1039-1046
    [39] KIM E H, JOHNSON J R, KIM H, et al. Inferring magnetospheric heavy ion density using EMIC waves[J]. J. Geophys. Res., 2015, 120(8):6464-6473
    [40] LEE D Y, NOH S J, CHOI C R, et al. Effect of hot anisotropic He+ ions on the growth and damping of electromagnetic ion cyclotron waves in the inner magnetosphere[J]. J. Geophys. Res., 2017, 122:4935-4942
    [41] THORNE R M, HORNE R B. 1Modulation of electromagnetic ion cyclotron instability due to interaction with ring current O+ during magnetic storms[J]. J. Geophys. Res., 1997, 102(A7):14155-14163
  • 加载中
计量
  • 文章访问数:  382
  • HTML全文浏览量:  37
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-10
  • 修回日期:  2020-09-14
  • 刊出日期:  2021-03-15

目录

    /

    返回文章
    返回