留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
ZHAO Jianfu, DU Wangfang, KANG Qi, LAN Ding, LI Kai, LI Weibin, LIU Y C, LUO Xinghong, MIAO Jianyin, WANG Qinggong, WANG Shuangfeng, ZHANG Tao, ZHANG Xingwang, ZHANG Yonghai, ZHENG Huiqiong. Recent Progress of Microgravity Science Research in China. Chinese Journal of Space Science, 2022, 42(4): 772-785 doi: 10.11728/cjss2022.04.yg23
Citation: ZHAO Jianfu, DU Wangfang, KANG Qi, LAN Ding, LI Kai, LI Weibin, LIU Y C, LUO Xinghong, MIAO Jianyin, WANG Qinggong, WANG Shuangfeng, ZHANG Tao, ZHANG Xingwang, ZHANG Yonghai, ZHENG Huiqiong. Recent Progress of Microgravity Science Research in China. Chinese Journal of Space Science, 2022, 42(4): 772-785 doi: 10.11728/cjss2022.04.yg23

Recent Progress of Microgravity Science Research in China

doi: 10.11728/cjss2022.04.yg23
More Information
  • Figure  1.  Experiments on thermocapillary convection of liquid bridge aboard the China Space Lab TG-2

    Figure  2.  Dominant force regions in the Bo-We parameter space

    Figure  3.  Change of droplet wetting state under different gravity (a) and the effect of the Bond number on maximum vertical jumping velocity (b)

    Figure  4.  Schematic diagram of convective flux induced by solvent imbibition during meniscus-guided printing (left). A phase diagram where sub-monolayer, monolayer, and multilayer phases are plotted as a function of the particle volume fraction φ and the printing speed $v_{\rm{p}} $ (right)

    Figure  5.  Recent microgravity combustion investigations on coal particles, dripping PE droplets, spherical and cylindrical PMMA, and PE isolated wires

    Figure  6.  Recent development of partial gravity flame spread and extinction of thin materials using the HCA

    Figure  7.  Containerless experiment of a Zr sample on CSS

    Figure  8.  Anatomy of Taiji-1 and its payloads

  • [1] ZHAO Jianfu, WANG Shuangfeng, LIU Qiang, et al. Retrospect and perspective on microgravity science in China[J]. Chinese Journal of Space Science, 2021, 41(1): 34-45 doi: 10.11728/cjss2021.01.034
    [2] LI K, ZHAO J F, KANG Q, et al. Academician Wen‑Rui Hu – proeminent pioneer and prominent leader of microgravity science in China[J]. Microgravity Science and Technology, 2022, 34(2): 19 doi: 10.1007/s12217-022-09934-7
    [3] KANG Q, WU D, DUAN L, et al. Space experimental study on wave modes under instability of thermocapillary convection in liquid bridges on Tiangong-2[J]. Physics of Fluids, 2020, 32(3): 034107 doi: 10.1063/1.5143219
    [4] KANG Q, WU D, DUAN L, et al. The effects of geometry and heating rate on thermocapillary convection in the liquid bridge[J]. Journal of Fluid Mechanics, 2019, 881: 951-982 doi: 10.1017/jfm.2019.757
    [5] KANG Q, WANG J, DUAN L, et al. The volume ratio effect on flow patterns and transition processes of thermocapillary convection[J]. Journal of Fluid Mechanics, 2019, 868: 560-583 doi: 10.1017/jfm.2019.108
    [6] GUO Ziyi, LI Kai, KANG Qi, et al. Study on bifurcation to chaos of surface tension gradient driven flow[J]. Advances in Mechanics, 2021, 51(1): 1-28 doi: 10.6052/1000-0992-20-022
    [7] CHEN C, FENG S Y, PENG H, et al. Thermocapillary convection flow and heat transfer characteristics of graphene nanoplatelet based nanofluid under microgravity[J]. Microgravity Science and Technology, 2021, 33(3): 40 doi: 10.1007/S12217-020-09854-4
    [8] ZHOU X M, CHI F X, JIANG Y N, et al. Moderate Prandtl number nanofluid thermocapillary convection instability in rectangular cavity[J]. Microgravity Science and Technology, 2022, 34(2): 24 doi: 10.1007/s12217-022-09940-9
    [9] GUO Ziyi, ZHAO Jianfu, LI Kai, et al. Bifurcation analysis of thermocapillary convection based on POD-Galerkin reduced-order method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1186-1198 doi: 10.6052/0459-1879-21-642
    [10] WANG Q G, XU M, WANG C, et al. Actuation of a nonconductive droplet in an aqueous fluid by reversed electrowetting effect[J]. Langmuir, 2020, 36(28): 8152-8164 doi: 10.1021/acs.langmuir.0c01161
    [11] WENG N, WANG Q G, GU J P, et al. The dynamics of droplet detachment in reversed electrowetting (REW)[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616: 126303 doi: 10.1016/j.colsurfa.2021.126303
    [12] WANG Q G, LI L, GU J P, et al. Manipulation of a nonconductive droplet in an aqueous fluid with AC electric fields: droplet dewetting, oscillation, and detachment[J]. Langmuir, 2021, 37(41): 12098-12111 doi: 10.1021/acs.langmuir.1c01934
    [13] CHEN S T, YE Z J, DUAN L, et al. Capillary driven flow in oval tubes under microgravity[J]. Physics of Fluids, 2021, 33(3): 032111 doi: 10.1063/5.0040993
    [14] LEI J C, XU Z M, XIN F X, et al. Dynamics of capillary flow in an undulated tube[J]. Physics of Fluids, 2021, 33(5): 052109 doi: 10.1063/5.0048868
    [15] ZHU C W, ZHOU X P, ZHANG G. Capillary plugs in horizontal rectangular tubes with non-uniform contact angles[J]. Journal of Fluid Mechanics, 2020, 901: R1 doi: 10.1017/jfm.2020.598
    [16] WENG N, WANG Q G, LI J D, et al. Liquid penetration in metal wire mesh between parallel plates under normal gravity and microgravity conditions[J]. Applied Thermal Engineering, 2020, 167: 114722 doi: 10.1016/j.applthermaleng.2019.114722
    [17] MA Y, LI Y Z, XIE F S, et al. Investigation on wicking performance of cryogenic propellants within woven screens under different thermal and gravity conditions[J]. Journal of Low Temperature Physics, 2020, 199(5): 1344-1362 doi: 10.1007/s10909-020-02446-x
    [18] LIU J T, LI Y, LI W, et al. Experimental investigation of liquid transport in a vane type tank of satellite with microgravity[J]. Aerospace Science and Technology, 2020, 105: 106007 doi: 10.1016/j.ast.2020.106007
    [19] ZHUANG B T, LI Y, LIU J T, et al. Numerical simulation of fluid transport along parallel vanes for vane type propellant tanks[J]. Microgravity Science and Technology, 2020, 32(2): 129-138 doi: 10.1007/s12217-019-09746-2
    [20] LI Y Q, DONG J Y, RUI W. Numerical simulation for capillary driven flow in capsule-type vane tank with clearances under microgravity[J]. Microgravity Science and Technology, 2020, 32(3): 321-329 doi: 10.1007/s12217-019-09773-z
    [21] LI J C, LIN H, LI K, et al. Liquid sloshing in partially filled capsule storage tank undergoing gravity reduction to low/micro-gravity Condition[J]. Microgravity Science and Technology, 2020, 32(4): 587-596 doi: 10.1007/s12217-020-09801-3
    [22] ZHANG D Z, MENG L, LI Y Q. Numerical simulation analysis of liquid transportation in capsule-type vane tank under microgravity[J]. Microgravity Science and Technology, 2020, 32(5): 817-824 doi: 10.1007/s12217-020-09811-1
    [23] LI J C, LIN H, LI K, et al. Dynamic behavior in a storage tank in reduced gravity using dynamic contact angle method[J]. Microgravity Science and Technology, 2020, 32(6): 1039-1048 doi: 10.1007/s12217-020-09831-x
    [24] CHEN S T, DUAN L, KANG Q. Study on propellant management device in plate surface tension tanks[J]. Acta Mechanica Sinica, 2021, 37(10): 1498-1508 doi: 10.1007/s10409-021-01121-y
    [25] LI J C, GUO B, ZHAO J F, et al. On the space thermal destratification in a partially filled hydrogen propellant tank by jet injection[J]. Microgravity Science and Technology, 2022, 34(1): 6 doi: 10.1007/s12217-021-09923-2
    [26] DU Wangfang, YUE Shuwen, ZHAO Jianfu, et al. Criteria of gravity independence in multiphase thermal fluid system[J]. Journal of Hebei University of Water Resources and Electric Engineering, 2019(1): 1-8 doi: 10.16046/j.cnki.issn2096-5680.2019.02.001
    [27] ZHAO J F, XIE J C, LIN H, et al. Experimental study of two-phase flow in microgravity[C]//51 st Int. Astronautical Cong. Rio de Janeiro, Brazil, October 2-6, 2000
    [28] HE F L, DU W F, ZHAO J F, et al. Numerical simulation on the effects of component layout orientation on the performance of a neon-charged cryogenic loop heat pipe[J]. Microgravity Science and Technology, 2020, 32(2): 179-188 doi: 10.1007/s12217-019-09761-3
    [29] BRENDEL L P M, BRAUN J E, GROLL E A. Comparison of gravity independence criteria for two-phase flow[J]. Journal of Thermophysics and Heat Transfer, 2021, 35(4): 830-842 doi: 10.2514/1.T6202
    [30] DU Wangfang, ZHAO Jianfu. Gravity scaling law of heat transfer in nucleate pool boiling[J]. Chinese Science Bulletin, 2020, 65(17): 1629-1637 doi: 10.1360/TB-2019-0337
    [31] RAJ R, KIM J, MCQUILLEN J. Pool boiling heat transfer on the international space station: experimental results and model verification[J]. Journal of Heat Transfer, 2012, 134(10): 101504 doi: 10.1115/1.4006846
    [32] FENG Y, LI H X, ZHAO J F, et al. Lattice Boltzmann study on influence of gravitational acceleration on pool nucleate boiling heat transfer[J]. Microgravity Science and Technology, 2021, 33(2): 21 doi: 10.1007/s12217-020-09864-2
    [33] LIU Ping, DU Wangfang, WU Ke, et al. Study on performance of pool boiling heat transfer in SOBER-SJ10 based on genetic algorithm[J]. Journal of Engineering Thermophysics, 2021, 42(7): 1784-1790
    [34] LIU B, GARIVALIS A I, CAO Z Z, et al. Effects of electric field on pool boiling heat transfer over microstructured surfaces under different liquid subcoolings[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122154 doi: 10.1016/j.ijheatmasstransfer.2021.122154
    [35] XU B, ZHANG C C, CHEN Z Q, et al. Investigation of Nano-droplet wetting states on array micro-structured surfaces with different gravity[J]. Computers & Fluids, 2021, 222: 104936 doi: 10.1016/j.compfluid.2021.104936
    [36] WANG X, XU B, WANG Y, et al. Directional migration of single droplet on multi-wetting gradient surface by 3 D lattice Boltzmann method[J]. Computers & Fluids, 2020, 198: 104392 doi: 10.1016/j.compfluid.2019.104392
    [37] WANG X, XU B, CHEN Z Q, et al. Effects of gravitational force and surface orientation on the jumping velocity and energy conversion efficiency of coalesced droplets[J]. Microgravity Science and Technology, 2020, 32(6): 1185-1197 doi: 10.1007/s12217-020-09841-9
    [38] MO S Y, CHEN Y S, HUANG L P, et al. Preparation and the cold storage performance of water/PVA sponge PCMs for aerospace applications[J]. Microgravity Science and Technology, 2022, 34(3): 35 doi: 10.1007/S12217-022-09946-3
    [39] LI Z F, ZENG Z K, XING Y, et al. Microscopic structure and dynamics study of granular segregation mechanism by cyclic shear[J]. Science Advances, 2021, 7(8): eabe8737 doi: 10.1126/sciadv.abe8737
    [40] WU Q L, HOU M Y, YANG L, et al. Parametric study of the clustering transition in vibration driven granular gas system[J]. Chinese Physics B, 2020, 29(5): 054502 doi: 10.1088/1674-1056/ab8217
    [41] XIAO S Z, CHENG X H, HOU M Y, et al. Analysis of experimental results on the bearing capacity of sand in low-gravity conditions[J]. Microgravity Science and Technology, 2022, 34(2): 16 doi: 10.1007/s12217-022-09929-4
    [42] CHENG X H, XIAO S Z, CAO A S, et al. A unified constitutive model for pressure sensitive shear flow transitions in moderate dense granular materials[J]. Scientific Reports, 2021, 11(1): 19669 doi: 10.1038/s41598-021-99006-4
    [43] LI W B, LAN D, WANG Y R. Exploration of direct-ink-write 3 D printing in space: droplet dynamics and patterns formation in microgravity[J]. Microgravity Science and Technology, 2020, 32(5): 935-940 doi: 10.1007/s12217-020-09820-0
    [44] YANG W T, ZHANG Y, HU L L, et al. An experimental study on ignition of single coal particles at low oxygen concentrations[J]. Frontiers in Energy, 2021, 15(1): 38-45 doi: 10.1007/s11708-020-0692-1
    [45] YANG W T, LIU B, ZHANG H, et al. Prediction improvements of ignition characteristics of isolated coal particles with a one-dimensional transient model[J]. Proceedings of the Combustion Institute, 2021, 38(3): 4083-4089 doi: 10.1016/j.proci.2020.06.235
    [46] YANG W T, ZHANG Y, LIU B, et al. Ignition predictions of isolated coal particles by different ignition criteria and devolatilization models[J]. Fuel, 2022, 314: 122772 doi: 10.1016/j.fuel.2021.122772
    [47] SUN P Y, WU C J, ZHU F, et al. Microgravity combustion of polyethylene droplet in drop tower[J]. Combustion and Flame, 2020, 222: 18-26 doi: 10.1016/j.combustflame.2020.08.032
    [48] WU C J, SUN P Y, WANG W Z, et al. Flame extinction of spherical PMMA in microgravity: Effect of fuel diameter and conduction[J]. Microgravity Science and Technology, 2020, 32(6): 1065-1075 doi: 10.1007/s12217-020-09829-5
    [49] KONG W J, WANG K, XIA W, et al. Ignition and combustion characteristics of overloaded wire insulations under weakly buoyancy or microgravity environments[M]//HU W R, KANG Q. Physical Science Under Microgravity: Experiments on Board the SJ-10 Recoverable Satellite. Singapore: Springer, 2019. DOI: 10.1007/978-981-13-1340-0_9
    [50] XUE S, KONG W J. Smoke emission and temperature characteristics of the long-term overloaded wire in space[J]. Journal of Fire Sciences, 2019, 37(2): 99-116 doi: 10.1177/0734904118821665
    [51] WU C J, Huang X Y, WANG S F, et al. Opposed flame spread over cylindrical PMMA under oxygen-enriched microgravity environment[J]. Fire Technology, 2020, 56(1): 71-89 doi: 10.1007/s10694-019-00896-8
    [52] WU C J, XIAO Y, WANG S F, et al. Horizontal flame spread over thin solids in reduced buoyancy environments[J]. Combustion and Flame, 2022, 240: 112008 doi: 10.1016/j.combustflame.2022.112008
    [53] ZHU F, HUANG X Y, WANG S F. Flame spread over polyethylene film: effects of gravity and fuel inclination[J]. Microgravity Science and Technology, 2022, 34(3): 26 doi: 10.1007/S12217-022-09945-4
    [54] HUANG X Y, GAO J. A review of near-limit opposed fire spread[J]. Fire Safety Journal, 2021, 120: 103141 doi: 10.1016/j.firesaf.2020.103141
    [55] FENG L L, WU Y X, XU K L, et al. Effect of particle distance on combustion behaviors through 1-D model with Neumann boundary condition[J]. Fuel, 2020, 276: 117974 doi: 10.1016/j.fuel.2020.117974
    [56] ZHOU H Y, ZHANG W Y, LIU Y C. A cell model analysis for droplets inside non-dilute n-heptane droplet clouds near autoignition limit[J]. International Journal of Heat and Mass Transfer, 2021, 175: 121189 doi: 10.1016/j.ijheatmasstransfer.2021.121189
    [57] ZHOU H Y, LIU Y C. External group combustion of droplet clouds under two-stage autoignition conditions[J]. Combustion and Flame, 2021, 234: 111689 doi: 10.1016/j.combustflame.2021.111689
    [58] LUO L, ZHOU H Y, SUN Y H, et al. Tsinghua university freefall facility (TUFF): a 2.2 second drop tunnel for microgravity research[J]. Microgravity Science and Technology, 2021, 33(2): 26 doi: 10.1007/s12217-021-09877-5
    [59] KONG Y F, LUO X H, LI Y, et al. Gravity-induced solidification segregation and its effect on dendrite growth in Al-2.8 wt.% Cu alloy[J]. Microgravity Science and Technology, 2021, 33(6): 72 doi: 10.1007/s12217-021-09913-4
    [60] WANG Z Z, CHEN J, FENG X, et al. Visual dynamical measurement of the solute-induced Marangoni effect of a growing drop with a PLIF method[J]. Chemical Engineering Science, 2021, 233: 116401 doi: 10.1016/j.ces.2020.116401
    [61] ZHANG Y, CHENG J C, GLICK Y, et al. Antisolvent crystallization of L-histidine in micro-channel reactor under microgravity[J]. Microgravity Science and Technology, 2020, 32(1): 27-33 doi: 10.1007/s12217-019-09728-4
    [62] WU Y L, LUO Z R, WANG J Y, et al. China's first step towards probing the expanding universe and the nature of gravity using a space borne gravitational wave antenna[J]. Communications Physics, 2021, 4(1): 34 doi: 10.1038/s42005-021-00529-z
    [63] LIU L, LÜ D S, CHEN W B, et al. In-orbit operation of an atomic clock based on laser-cooled 87Rb atoms[J]. Nature Communications, 2018, 9(1): 2760 doi: 10.1038/s41467-018-05219-z
    [64] WAN J Y, WANG X, ZHANG X, et al. Quasi-one-dimensional diffuse laser cooling of atoms[J]. Physical Review A, 2022, 105(3): 033110 doi: 10.1103/PhysRevA.105.033110
    [65] LEI X H, CAO Y J, MA B H, et al. Development of mouse preimplantation embryos in space[J]. National Science Review, 2020, 7(9): 1437-1446 doi: 10.1093/nsr/nwaa062
    [66] LI F, YE Y, LEI X H, et al. Effects of microgravity on early embryonic development and embryonic stem cell differentiation: phenotypic characterization and potential mechanisms[J]. Frontiers in Cell and Developmental Biology, 2021, 9: 797167 doi: 10.3389/fcell.2021.797167
    [67] WANG L H, XIE J Y, MOU C H, et al. Transcriptomic analysis of the interaction between FLOWERING LOCUS T induction and photoperiodic signaling in response to spaceflight[J]. Frontiers in Cell and Developmental Biology, 2021, 9: 813246 doi: 10.3389/fcell.2021.813246
    [68] WU Y Y, XIE J Y, WANG L H, et al. Circumnutation and growth of inflorescence stems of Arabidopsis thaliana in response to microgravity under different photoperiod conditions[J]. Life, 2020, 10(3): 26 doi: 10.3390/life10030026
    [69] XIE J Y, WANG L H, ZHENG H Q. Molecular Basis to integrate microgravity signals into the photoperiodic flowering pathway in Arabidopsis thaliana under spaceflight condition[J]. International Journal of Molecular Sciences, 2022, 23(1): 63 doi: 10.3390/ijms23010063
    [70] XU P P, CHEN H Y, HU J B, et al. Potential evidence for transgenerational epigenetic memory in Arabidopsis thaliana following spaceflight[J]. Communications Biology, 2021, 4(1): 835 doi: 10.1038/s42003-021-02342-4
    [71] ZENG D Y, CUI J, YIN Y S, et al. Metabolomics analysis in different development stages on SP0 generation of rice seeds after spaceflight[J]. Frontiers in Plant Science, 2021, 12: 700267 doi: 10.3389/fpls.2021.700267
    [72] ZHANG J Q, DONG W B, WANG Z, et al. Development of a new microgravity experiment facility with electromagnetic launch[J]. Microgravity Science and Technology, 2021, 33(6): 68 doi: 10.1007/s12217-021-09915-2
  • 加载中
图(8)
计量
  • 文章访问数:  401
  • HTML全文浏览量:  153
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-29
  • 录用日期:  2022-06-29
  • 网络出版日期:  2022-07-06

目录

    /

    返回文章
    返回