留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
王赤, 汪毓明, 田晖, 李晖, 倪彬彬, 符慧山, 雷久侯, 薛向辉, 崔峻, 尧中华, 罗冰显, 张效信, 张爱兵, 张佼佼, 李文亚. 空间物理学科发展战略研究[J]. 空间科学学报, 2023, 43(1): 9-42. doi: 10.11728/cjss2023.01.yg01
引用本文: 王赤, 汪毓明, 田晖, 李晖, 倪彬彬, 符慧山, 雷久侯, 薛向辉, 崔峻, 尧中华, 罗冰显, 张效信, 张爱兵, 张佼佼, 李文亚. 空间物理学科发展战略研究[J]. 空间科学学报, 2023, 43(1): 9-42. doi: 10.11728/cjss2023.01.yg01
WANG Chi, WANG Yuming, TIAN Hui, LI Hui, NI Binbin, FU Huishan, LEI Jiuhou, XUE Xianghui, CUI Jun, YAO Zhonghua, LUO Bingxian, ZHANG Xiaoxin, ZHANG Aibing, ZHANG Jiaojiao, LI Wenya. Strategic Study for the Development of Space Physics (in Chinese). Chinese Journal of Space Science, 2023, 43(1): 9-42 doi: 10.11728/cjss2023.01.yg01
Citation: WANG Chi, WANG Yuming, TIAN Hui, LI Hui, NI Binbin, FU Huishan, LEI Jiuhou, XUE Xianghui, CUI Jun, YAO Zhonghua, LUO Bingxian, ZHANG Xiaoxin, ZHANG Aibing, ZHANG Jiaojiao, LI Wenya. Strategic Study for the Development of Space Physics (in Chinese). Chinese Journal of Space Science, 2023, 43(1): 9-42 doi: 10.11728/cjss2023.01.yg01

空间物理学科发展战略研究

doi: 10.11728/cjss2023.01.yg01
基金项目: 国家自然科学基金项目资助(42142006)
详细信息
    作者简介:

    王赤:E-mail:cw@swl.ac.cn

  • 中图分类号: P3

Strategic Study for the Development of Space Physics

  • 摘要: 空间物理学是人类进入空间时代后迅速发展起来的一门新兴的多学科交叉的前沿基础学科。其将太阳和太阳风控制的日球层空间作为一个系统,研究太阳/太阳风与行星/彗星的上层大气、电离层、磁层乃至星际介质之间的相互作用。空间物理学从本质上讲是一门实验科学,空间物理探测是空间物理学发展的基础。进入新世纪,随着空间基础设施和人类高技术活动的日益频繁,空间物理学进入新的发展阶段,强调科学与应用的密切结合。近年来,空间物理学取得了一系列重要进展。本文对接国家自然科学基金委地球科学部“宜居地球−地球系统科学”的顶层战略设计,梳理总结近年来空间物理各学科发展动态和趋势,凝练中国空间物理学未来发展的重点领域,优化学科布局,推进空间物理各学科的高质量发展。

     

  • 表  1  中国现有高层大气台站与设备分布

    Table  1.   Distribution of existing upper atmosphere stations and equipments in China

    台站/经纬度设备探测参量*探测高度/km单位
    漠河
    53.5°N,122.3°E
    流星雷达
    FP干涉仪
    UVT 75~110
    250,97,87
    IGGCAS
    河北兴隆
    40.4°N,117.6°E
    FP干涉仪
    全天空气辉成像仪
    UVT
    {OH},{O}
    87,94,250
    87,94,250
    NSSC
    北京延庆
    40.2°N,116.2°E
    瑞利-钠激光雷达 Tρ,[Na] 30~70
    80~110
    NSSC
    河北廊坊
    39.5°N,116.7°E
    窄带钠激光雷达
    全天空气辉成像仪
    中频雷达
    ρ,[Na]
    {OH}
    UV
    TUV
    80~110
    87
    80~100
    NSSC
    北京
    40.3°N,116.2°E
    流星雷达 UVT 75~110 IGGCAS
    河北香河
    39.8°N,116.9°E
    MST雷达 UV 10~40
    70~120
    IAPCAS
    山西岢岚
    38.7°N,111.6°E
    FP干涉仪 UVT 250,97,87 NCSW
    山西五寨
    38.9°N,111.8°E
    中频雷达 UV 60~100 NCSW
    青岛
    36.0°N,120.2°E
    钠激光雷达 ρ,[Na] 80~100 CIRWP
    合肥
    31.8°N,117.3°E
    瑞利-钠激光雷达
    测风激光雷达
    窄带钠激光雷达
    全天空气辉成像仪
    Tρ,[Na]
    UV
    TUV,[Na]
    {OH},{O}
    30~70
    80~110
    0~60
    80~105
    87,94,250
    USTC
    武汉
    30.5°N,114.4°E
    钠激光雷达
    铁激光雷达
    钙激光雷达
    MST雷达
    瑞利-钠双波长激光雷达
    Tρ,[Na]
    T,[Fe]
    [Ca],[Ca+]
    UV
    Tρ,[Na]
    30~70
    80~110
    0~70
    80~110
    80~110
    10~40,
    70~120
    30~70
    80~110
    WHU
    WIPM
    武汉
    30.5°N,114.4°E
    流星雷达 UVT 75~110 IGGCAS
    云南曲靖
    25.6°N,103.8°E
    流星雷达
    中频雷达
    全天空气辉成像仪
    UVT
    UV
    {OH},{O}
    75~110
    60~100
    87,94,250
    CIRWP
    NSSC
    深圳
    22.6°N,114.1°E
    FPI干涉仪 UVT 250,97,87 NCSW
    海口
    20.0°N,110.4°E
    瑞利-钠激光雷达 Tρ,[Na] 30~70
    80~110
    NSSC
    富克
    19.5°N,109.1°E
    流星雷达
    全天空气辉成像仪
    UV
    {OH},{O}
    80~100
    87,94,250
    NSSC
    三亚
    18.3°N,109.6°E
    流星雷达 UVT 75~110 IGGCAS
    *U为东西向风速,V为南北向风速,T 为大气温度,ρ为大气密度,[x]为金属成分密度,{x}为气辉强度。
    下载: 导出CSV
  • [1] GIZON L, CAMERON R, POURABDIAN M, et al. Meridional flow in the Sun’s convection zone is a single cell in each hemisphere[J]. Science, 2020, 368: 1469-1472 doi: 10.1126/science.aaz7119
    [2] HANASOGE S, HOTTA H, SREENIVASAN K. Turbulence in the Sun is suppressed on large scales and confined to equatorial regions[J]. Science Advances, 2020, 6: eaba9639 doi: 10.1126/sciadv.aba9639
    [3] HOTTA H, IIJIMA H, KUSANO K. Weak influence of near-surface layer on solar deep convection zone revealed by comprehensive simulation from base to surface[J]. Science Advances, 2019, 5: eaau2307 doi: 10.1126/sciadv.aau2307
    [4] MACTAGGART D, PRIOR C, RAPHALDINI B, et al. Direct evidence that twisted flux tube emergence creates solar active regions[J]. Nat Commun, 2021, 12(1): 6621 doi: 10.1038/s41467-021-26981-7
    [5] CHEUNG M, REMPEL M, CHINTZOGLOU G, et al. A comprehensive three-dimensional radiative magnetohydrodynamic simulation of a solar flare[J]. Nature Astronomy, 2019, 3: 160-166
    [6] KUSANO K, IJU T, BAMBA Y, et al. A physics-based method that can predict imminent large solar flares[J]. Science, 2020, 369: 587-591 doi: 10.1126/science.aaz2511
    [7] ISHIKAWA R, BUENO J, ALEMAN T, et al. Mapping solar magnetic fields from the photosphere to the base of the corona[J]. Science Advances, 2021, 7(8): eabe8406 doi: 10.1126/sciadv.abe8406
    [8] FLEISHMAN G, GARY D, CHEN B, et al. Decay of the coronal magnetic field can release sufficient energy to power a solar flare[J]. Science, 2020, 367: 278-280 doi: 10.1126/science.aax6874
    [9] CHEN B, SHEN C, GARY D E, et al. Measurement of magnetic field and relativistic electrons along a solar flare current sheet[J]. Nature Astronomy, 2020, 4(12): 1140-1147 doi: 10.1038/s41550-020-1147-7
    [10] BROOKS D H, YARDLEY S L. The source of the major solar energetic particle events from super active region 11944[P]. 2021-03-25
    [11] BAHAUDDIN S, BRADSHAW S, WINEBARGER A. The origin of reconnection-mediated transient brightenings in the solar transition region[J]. Nature Astronomy, 2021, 5: 1-9 doi: 10.1038/s41550-020-01298-5
    [12] STANGALINI M, ERDéLYI R, BOOCOCK C, et al. Torsional oscillations within a magnetic pore in the solar photosphere[J]. Nature Astronomy, 2021, 5(7): 691-696 doi: 10.1038/s41550-021-01354-8
    [13] JESS D B, SNOW B, HOUSTON S J, et al. A chromospheric resonance cavity in a sunspot mapped with seismology[J]. Nature Astronomy, 2020, 4: 220-227
    [14] ANTOLIN P, PAGANO P, TESTA P, et al. Reconnection nanojets in the solar corona[J]. Nature Astronomy, 2021, 5: 1-9
    [15] CHEN H, ZHANG J, PONTIEU B, et al. Coronal Mini-jets in an Activated Solar Tornado-like Prominence[P]. 2020-08-07
    [16] BERGHMANS D, AUCHèRE F, LONG D M, et al. Extreme-UV quiet Sun brightenings observed by the Solar Orbiter/EUI[J]. Astronomy and Astrophysics, 2021, 656: L4 doi: 10.1051/0004-6361/202140380
    [17] CHEN Y, PRZYBYLSKI D, PETER H, et al. Transient small-scale brightenings in the quiet solar corona: A model for campfires observed with Solar Orbiter[J]. Astronomy and Astrophysics, 2021, 656: L7 doi: 10.1051/0004-6361/202140638
    [18] BALE S P, BADMAN S T, BONNELL J W, et al. Highly structured slow solar wind emerging from an equatorial coronal hole[J]. Nature, 2019, 576: 1-6
    [19] KASPER J C, BALE S D, BELCHER J W, et al. Alfvénic velocity spikes and rotational flows in the near-sun solar wind[J]. Nature, 2019, 576: 1-4
    [20] HOWARD R A, VOURLIDAS A, BOTHMER V, et al. Near-Sun observations of an F-corona decrease and K-corona fine structure[J]. Nature, 2019, 576: 1-5
    [21] MCCOMAS D J, CHRISTIAN E R, COHEN C, et al. Probing the energetic particle environment near the Sun[J]. Nature, 2019, 576: 223-227 doi: 10.1038/s41586-019-1811-1
    [22] MOSES J D, ANTONUCCI E, NEWMARK J, et al. Global helium abundance measurements in the solar corona[J]. Nature Astronomy, 2020, 4: 1134-1139 doi: 10.1038/s41550-020-1156-6
    [23] SEATON D B, HUGHES J M, TADIKONDA S K, et al. The Sun’s dynamic extended corona observed in extreme ultraviolet[J]. Nature Astronomy, 2021, 5: 1-7
    [24] BURCH J L, WEBSTER J M, HESSE M, et al. Electron inflow velocities and reconnection rates at Earth's magnetopause and magnetosheath[J]. Geophysical Research Letters, 2020, 47(17): e2020GL089082
    [25] FARGETTE N, LAVRAUD B, OIEROSET M, et al. On the ubiquity of magnetic reconnection inside flux transfer event-like structures at the Earth’s magnetopause[J]. Geophysical Research Letters, 2020, 47(6): e86726
    [26] NAKAMURA T K M, STAWARZ J E, HASEGAWA H, et al. Effects of fluctuating magnetic field on the growth of the Kelvin-Helmholtz instability at the Earth’s magnetopause[J]. Journal of Geophysical Research: Space Physics, 2020, 125: e2019JA027515
    [27] CHASTON C C, TRAVNICEK P. Ion scattering and energization in filamentary structures through Earth’s magnetosheath[J]. Geophysical Research Letters, 2021, 48(15): e2021GL094029
    [28] STAWARZ J E, EASTWOOD J P, Phan T D, et al. Properties of the turbulence associated with electron-only magnetic reconnection in Earth’s magnetosheath[J]. The Astrophysical Journal Letters, 2019, 877: L37 doi: 10.3847/2041-8213/ab21c8
    [29] VEGA C, ROYTERSHTEYN V, DELZANNO G L, et al. Electron-only reconnection in kinetic-Alfvén turbulence[J]. The Astrophysical Journal Letters, 2020, 893(1): L10 doi: 10.3847/2041-8213/ab7eba
    [30] AMANO T, KATOU T, KITAMURA N, et al. Observational evidence for stochastic shock drift acceleration of electrons at the Earth’s bow shock[J]. Physical Review Letters, 2020, 124(6): 065101 doi: 10.1103/PhysRevLett.124.065101
    [31] OKA M, OTSUKA F, MATSUKIYO S, et al. Electron scattering by low-frequency whistler waves at Earth’s bow shock[J]. The Astrophysical Journal, 2019, 886: 53 doi: 10.3847/1538-4357/ab4a81
    [32] JOHLANDER A, BATTARBEE M, VAIVADS A, et al. Ion acceleration efficiency at the Earth’s bow shock: observations and simulation results[J]. The Astrophysical Journal, 2021, 914: 82 doi: 10.3847/1538-4357/abfafc
    [33] GINGELL I, SCHWARTZ S J, EASTWOOD J P, et al. Statistics of reconnecting current sheets in the transition region of Earth’s bow shock[J]. Journal of Geophysical Research: Space Physics, 2020, 125: 1-14
    [34] CHEN LJ, WANG S, HESSE M, et al. Electron diffusion regions in magnetotail reconnection under varying guide fields[J]. Geophysical Research Letters, 2019, 46(12): 6230-6238 doi: 10.1029/2019GL082393
    [35] SITNOV M I, MOTOBA T, SWISDAK M. Multiscale nature of the magnetotail reconnection onset[J]. Geophysical Research Letters, 2021, 48: 1-6
    [36] HUBBERT M, RUSSELL C T, QI Y, et al. Electron‐only reconnection as a transition phase from quiet magnetotail current sheets to traditional magnetotail reconnection[J]. Journal of Geophysical Research: Space Physics, 2022, 127(3): 1-18
    [37] ANGELOPOULOS V, ARTEMYEV A, Phan T D, et al. Near-Earth magnetotail reconnection powers space storms[J]. Nature Physics, 2020. DOI: 10.1038/s41567-019-0749-4
    [38] MERKIN V G, PANOV E V, SORATHIA K A, et al. Contribution of bursty bulk flows to the global dipolarization of the magnetotail during an isolated substorm[J]. Journal of Geophysical Research: Space Physics, 2019, 124(11): 8647-8668 doi: 10.1029/2019JA026872
    [39] SERGEEV V A, SUN W, YANG J, et al. Manifestations of magnetotail flow channels in energetic particle signatures at low‐altitude orbit[J]. Geophysical Research Letters, 2021, 48(15): 1-10
    [40] ERIKSSON E, VAIVADS A, ALM L, et al. Electron acceleration in a magnetotail reconnection outflow region using magnetospheric multiScale data[J]. Geophysical Research Letters, 2020, 47(1): 1-8
    [41] BERGSTEDT K, JI H, JARA-ALMONTE J, et al. Statistical properties of magnetic structures and energy dissipation during turbulent reconnection in the Earth’s magnetotail[J]. Geophysical Research Letters, 2020, 47(19): e2020GL088540
    [42] SHUSTOV P I, ZHANG X J, PRITCHETT P L, et al. Statistical properties of sub-ion magnetic holes in the dipolarized magnetotail: formation, structure, and 2 dynamics 3[J]. Journal of Geophysical Research: Space Physics, 2019, 124(1): 342-359 doi: 10.1029/2018JA025852
    [43] GRIGORENKO E E, MALYKHIN A Y, SHKLYAR D R, et al. Investigation of electron distribution functions associated with whistler waves at dipolarization fronts in the Earth’s magnetotail: MMS observations[J]. Journal of Geophysical Research: Space Physics, 2020, 125(9): 1-18
    [44] ALQEEQ S W, CONTEL O, CANU P, et al. Investigation of the homogeneity of energy conversion processes at dipolarization fronts from MMS measurements[J]. Physics of Plasmas, 2022, 29: 012906 doi: 10.1063/5.0069432
    [45] SCHMID D, VOLWERK M, PLASCHKE F, et al. Dipolarization fronts: tangential discontinuities? On the spatial range of validity of the MHD jump conditions[J]. Journal of Geophysical Research: Space Physics, 2019, 124(12): 9963-9975 doi: 10.1029/2019JA027189
    [46] NAKAMURA R, BAUMJOHANN W, NAKAMURA T K M, et al. Thin current sheet behind the dipolarization front[J]. Journal of Geophysical Research: Space Physics, 2021, 126: A029518
    [47] CLAUDEPIERRE S G, MA Q, BORTNIK J, et al. Empirically estimated electron lifetimes in the Earth’s radiation belts: Van Allen Probe observations[J]. Geophysical Research Letters, 2020, 47(3): e2019GL086053
    [48] CLAUDEPIERRE S G, MA Q, BORTNIK J, et al. Empirically estimated electron lifetimes in the Earth’s radiation belts: Comparison with theory[J]. Geophysical Research Letters, 2020, 47: e2019GL086056
    [49] LI J, BORTNIK J, AN X, et al. Origin of two-band chorus in the radiation belt of Earth[J]. Nature Communications, 2019, 10: 1-9
    [50] MEREDITH N P, BORTNIK J, HORNE R B, et al. Statistical investigation of the frequency dependence of the chorus source mechanism of plasmaspheric hiss[J]. Geophysical Research Letters, 2021(6): e2021GL092725
    [51] OMURA Y, HSIEH Y K, FOSTER J C, et al. Cyclotron acceleration of relativistic electrons through Landau resonance with obliquely propagating whistler-mode chorus emissions[J]. Journal of Geophysical Research: Space Physics, 2019, 124: 2795-2810
    [52] ZHANG X J, ARTEMYEV A, ANGELOPOULOS V, et al. Superfast precipitation of energetic electrons in the radiation belts of the Earth[J]. Nature Communications, 2022, 13(1): 1-8
    [53] ZHAO H, NI B, LI X, et al. Plasmaspheric hiss waves generate a reversed energy spectrum of radiation belt electrons[J]. Nature Physics, 2019, 15(4): 367 doi: 10.1038/s41567-018-0391-6
    [54] JOSEPH J, JAYNES A N, BAKER D N, et al. Van Allen belt punctures and their correlation with solar wind, geomagnetic activity, and ULF waves[J]. Journal of Geophysical Research: Space Physics, 2021, 126(1): e2020JA028679
    [55] ALLISON H J, SHPRITS Y Y. Local heating of radiation belt electrons to ultra-relativistic energies[J]. Nature Communications, 2020, 11: 4533 doi: 10.1038/s41467-020-18053-z
    [56] BRUFF M, JAYNES A N, ZHAO H, et al. The role of the dynamic plasmapause in outer radiation belt electron flux enhancement[J]. Geophysical Research Letters, 2020, 47(7): e2020GL086991
    [57] VALENTIC T, BUONOCORE J, COUSINS M, et al. AMISR the advanced modular incoherent scatter radar[C]//IEEE International Symposium on Phased Array Systems & Technology. IEEE: Waltham Massachusetts, 2013
    [58] WANNBERG G, ANDERSSON H, BEHLKE R, et al. EISCAT_3 D-a next-generation European radar system for upper atmosphere and geospace research[J]. Radio Science Bulletin, 2010, 332(1): 75-88
    [59] OLSEN N. The swarm satellite constellation application and research facility (SCARF) and swarm data products[J]. Earth Planets Space, 2012, 65: 1189-200
    [60] ANTHES R, BERNHARDT P, CUCURULL L, et al. The COSMIC/Formosat-3 mission: early results[J]. Bulletin of The American Meteorological Society-BULL AMER METEOROL SOC, 2008, 89: 313-333 doi: 10.1175/BAMS-89-3-313
    [61] EASTES R, MCCLINTOCK W, BURNS A, et al. The Global-Scale Observations of the Limb and Disk (GOLD) mission[J]. Space Science Reviews, 2017, 212: 383-408 doi: 10.1007/s11214-017-0392-2
    [62] IMMEL T, ENGLAND S, MENDE S, et al. The ionospheric connection explorer mission: mission goals and design[J]. Space Science Reviews, 2017, 214(1): 12-47
    [63] SABAKA T, TØFFNER-CLAUSEN L, OLSEN N, et al. A Comprehensive Model of Earth’s Magnetic Field Determined From 4 Years of Swarm Satellite Observations[J]. Earth, Planets and Space, 2018, 70: 130 doi: 10.1186/s40623-018-0896-3
    [64] MARCHETTI D, DE SANTIS A, SHEN X, et al. Possible Lithosphere-Atmosphere-Ionosphere Coupling effects prior to the 2018 Mw=7.5 Indonesia earthquake from seismic, atmospheric and ionospheric data[J]. Journal of Asian Earth Sciences, 2019, 188: 104097
    [65] ANTHES R. Exploring earth's atmosphere with radio occultation: contributions to weather, climate and space weather[J]. Atmospheric Measurement Techniques Discussions, 2011, 4(6): 1077-1103 doi: 10.5194/amt-4-1077-2011
    [66] EASTES R W, SOLOMON S, DANIELL R, et al. Global-scale observations of the equatorial ionization anomaly[J]. Geophysical Research Letters, 2019, 46(16): 9318-9326 doi: 10.1029/2019GL084199
    [67] IMMEL T, HARDING B, HEELIS R, et al. Regulation of ionospheric plasma velocities by thermospheric winds[J]. Nature Geoscience, 2021, 14(12): 893-900 doi: 10.1038/s41561-021-00848-4
    [68] 任志鹏. 高层大气建模: 从地球到行星[J]. 科学通报, 2020, 65(14): 1320-1335 doi: 10.1360/TB-2019-0803

    REN Z. Upper atmosphere modeling: from Earth to planet[J]. Chinese Sci Bull, 2020, 65(14): 1320-1335 doi: 10.1360/TB-2019-0803
    [69] LIU Y, LEI J, YU P, et al. Laboratory excitation of the Kelvin-Helmholtz instability in an ionospheric-like plasma[J]. Geophysical Research Letters, 2018, 45(5): 1-8
    [70] CHARTIER A, MATSUO T, ANDERSON J, et al. Ionospheric data assimilation and forecasting during storms[J]. Journal of Geophysical Research: Space Physics, 2016, 121(1): 764-778 doi: 10.1002/2014JA020799
    [71] MATSUO T, FEDRIZZI M, FULLER-ROWELL T, et al. Data assimilation of thermospheric mass density[J]. Space Weather, 2012, 10: 5002
    [72] LIU Y, SHI P, ZHANG X, et al. Laboratory plasma devices for space physics investigation[J]. Review of Scientific Instruments, 2021, 92: 071101 doi: 10.1063/5.0021355
    [73] GANGULI G, CRABTREE C, FLETCHER A, et al. Behavior of compressed plasmas in magnetic fields[J]. Reviews of Modern Plasma Physics, 2020, 4: 12 doi: 10.1007/s41614-020-00048-4
    [74] GIAMMARIA F, VANNARONI G, BRUNO R, et al. The INAF-IFSI Large Plasma Chamber. Technical Report INAF/IFSI-2019-18, Institute for Space Astrophysics and Planetary; National Institute for Astrophysics, 2009
    [75] MIRZAEI H R, KAZEMI M, ETAATI G, et al. Analysis and design of microwave resonant plasma source for Iranian Space Plasma Simulation Chamber[J]. Journal of Theoretical and Applied Physics, 2022, 16(3): 162221
    [76] AIDAKINA N, GALKA A, GUNDORIN V, et al. Simulation of physical phenomena in the ionosphere and magnetosphere of the Earth on Krot plasma device. some results and prospects[J]. Geomagnetism and Aeronomy, 2018, 58: 314-324 doi: 10.1134/S0016793218030027
    [77] KARAN D, DANIELL R, ENGLAND S, et al. First zonal drift velocity measurement of equatorial plasma bubbles (EPBs) from a geostationary orbit using GOLD data[J]. Journal of Geophysical Research: Space Physics, 2020, 125: 1-11
    [78] PARK J, HUANG C S, EASTES R, et al. Temporal evolution of low‐latitude plasma blobs identified from multiple measurements: ICON, GOLD, and Madrigal TEC[J]. Journal of Geophysical Research: Space Physics, 2022, 127(3): 1-14
    [79] MAHER P, GERBER E, MEDEIROS B, et al. Model hierarchies for understanding atmospheric circulation[J]. Reviews of Geophysics, 2019, 57(2): 250-280 doi: 10.1029/2018RG000607
    [80] DENTON M H, KIVI R, ULICH T, et al. Solar proton events and stratospheric ozone depletion over northern Finland[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 177: 218-227
    [81] NISCHAL N, OBERHEIDE J, MLYNCZAK M, et al. Solar cycle variability of nonmigrating tides in the 5.3 μm and 15 μm infrared cooling of the thermosphere (100-180 km) from SABER[J]. Journal of Geophysical Research: Space Physics, 2019, 124(3): 2338-2356 doi: 10.1029/2018JA026356
    [82] ROY I. Solar cyclic variability can modulate winter Arctic climate[J]. Scientific Reports, 2018, 8: 4864 doi: 10.1038/s41598-018-22854-0
    [83] CHIODO G, OEHRLEIN J, POLVANI L, et al. Insignificant influence of the 11-year solar cycle on the North Atlantic Oscillation[J]. Nature Geoscience, 2019, 12: 94-99 doi: 10.1038/s41561-018-0293-3
    [84] EASTES R, MCCLINTOCK W, AKSNES A, et al. Global-scale Observations of the Limb and Disk (GOLD)[C]//AGU Spring Meeting. Acapulco Mexico: AGU, 2007
    [85] CRIDDLE N, PAUTET P D, YUAN T, et al. Evidence for Horizontal Blocking and Reflection of a Small‐Scale Gravity Wave in the Mesosphere[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(10): e2019JD031828
    [86] ERN M, TRINH Q T, PREUSSE P, et al. GRACILE: A comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings[J]. Earth System Science Data, 2018, 10: 857-892 doi: 10.5194/essd-10-857-2018
    [87] MINAMIHARA Y, SATO K, TSUTSUMI M. Intermittency of gravity waves in the antarctic troposphere and lower stratosphere revealed by the PANSY radar observation[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(15): e2020JD032543
    [88] BAUMGARTEN K, GERDING M, BAUMGARTEN G, et al. Temporal variability of tidal and gravity waves during a record long 10-day continuous lidar sounding[J]. Atmospheric Chemistry and Physics, 2018, 18: 371-384 doi: 10.5194/acp-18-371-2018
    [89] MEDVEDEV A, YIĞIT E. Gravity waves in planetary atmospheres: their effects and parameterization in global circulation models[J]. Atmosphere, 2019, 10: 531 doi: 10.3390/atmos10090531
    [90] LIU H L. Variability and predictability of the space environment as related to lower atmosphere forcing[J]. Space Weather, 2016, 14(9): 634-658 doi: 10.1002/2016SW001450
    [91] FRITTS D, LAUGHMAN B, WANG L, et al. Gravity wave dynamics in a mesospheric inversion layer: 1. reflection, trapping, and instability dynamics: GW dynamics in a MIL: part 1[J]. Journal of Geophysical Research: Atmospheres, 2017, 123: 1-23
    [92] XU Z, GUO J, WIMMER-SCHWEINGRUBER R, et al. First Solar Energetic Particles Measured on the Lunar Far-side[P]. 2020-08-08
    [93] RASCA A, FATEMI S, FARRELL W, et al. A double disturbed Lunar plasma wake[J]. Journal of Geophysical Research: Space Physics, 2021, 126(2): 1-13
    [94] SAWAGUCHI W, HARADA Y, KURITA S. Discrete rising tone elements of whistler-mode waves in the vicinity of the Moon: ARTEMIS observations[J]. Geophysical Research Letters, 2020, 48(1): e2020GL091100
    [95] HOWARD S K, HALEKAS J S, FARRELL W, et al. Solar wind and interplanetary magnetic field influence on ultra low frequency waves and reflected ions near the moon[J]. Journal of Geophysical Research: Space Physics, 2020, 125: e2019JA027209
    [96] DECA J, HEMINGWAY D J, DIVIN A, et al. Simulating the reiner gamma swirl: the long‐term effect of solar wind standoff[J]. Journal of Geophysical Research: Planets, 2020, 125: e2019JE006219
    [97] YEO L, HAN J, WANG X, et al. Laboratory simulation of solar wind interaction with lunar magnetic anomalies[J]. Journal of Geophysical Research: Space Physics, 2022, 127(1): 1-8
    [98] SUN W J, SLAVIN J, DEWEY R M, et al. MESSENGER observations of mercury’s nightside magnetosphere under extreme solar wind conditions: reconnection-generated structures and steady convection[J]. Journal of Geophysical Research: Space Physics, 2020, 125(3): 1-27
    [99] JASINSKI J, REGOLI L, CASSIDY T, et al. A transient enhancement of Mercury’s exosphere at extremely high altitudes inferred from pickup ions[J]. Nature Communications, 2020, 11(1): 1-9 doi: 10.1038/s41467-019-13993-7
    [100] WEBER T, BRAIN D, XU S, et al. Martian crustal field influence on O+ and O2+ escape as measured by MAVEN[J]. Journal of Geophysical Research: Space Physics, 2021, 126(8): 1-20
    [101] WEBER T, BRAIN D, MITCHELL D, et al. The influence of solar wind pressure on martian crustal magnetic field topology[J]. Geophysical Research Letters, 2019, 46(5): 2347-2354 doi: 10.1029/2019GL081913
    [102] CRAVENS T, FOWLER C, BRAIN D, et al. Magnetic Reconnection in the Ionosphere of Mars: The Role of Collisions[J]. Journal of Geophysical Research: Space Physics, 2020, 125(9): 1-16
    [103] GIRAZIAN Z, HALEKAS J, MORGAN D, et al. The Effects of Solar Wind Dynamic Pressure on the Structure of the Topside Ionosphere of Mars [P]. 2019-08-16
    [104] SANCHEZ-CANO B, NARVAEZ C, LESTER M, et al. Mars' Ionopause: A matter of pressures[J]. Journal of Geophysical Research: Space Physics, 2020, 125(9): 1-19
    [105] NAUTH M, FOWLER C, ANDERSSON L, et al. The influence of magnetic field topology and orientation on the distribution of thermal electrons in the Martian magnetotail[J]. Journal of Geophysical Research: Space Physics, 2021, 126: 1-16
    [106] CAO H, DOUGHERTY M, HUNT G, et al. The landscape of Saturn’s internal magnetic field from the Cassini Grand Finale[P]. 2019-11-01
    [107] MOORE K, BOLTON B, CAO H, et al. No evidence for time variation in saturn’s internal magnetic field[J]. The Planetary Science Journal, 2021, 2: 181 doi: 10.3847/PSJ/ac173c
    [108] JASINSKI J, ARRIDGE C, BADER A, et al. Saturn’s open-closed field line boundary: a Cassini electron survey at Saturn’s magnetosphere[J]. Journal of Geophysical Research: Space Physics, 2019, 124(12): 18-35
    [109] DELAMERE P, NG C, DAMIANO P, et al. Kelvin–Helmholtz‐related turbulent heating at Saturn’s magnetopause boundary[J]. Journal of Geophysical Research: Space Physics, 2021, 126(2): 1-11
    [110] O'DONOGHUE J, MOORE L, BHAKYAPAIBUL T, et al. Global upper-atmospheric heating on Jupiter by the polar aurorae[J]. Nature, 2021, 596: 54-57 doi: 10.1038/s41586-021-03706-w
    [111] MORI K, HAILEY C, BRIDGES G, et al. Observation and origin of non-thermal hard X-rays from Jupiter[J]. Nature Astronomy, 2022, 6: 442-448 doi: 10.1038/s41550-021-01594-8
    [112] ROUSSOS E, COHEN C, KOLLMANN P, et al. A source of very energetic oxygen located in Jupiter’s inner radiation belts[J]. Science Advances, 2022, 8(2): eabm4234 doi: 10.1126/sciadv.abm4234
    [113] BONFOND B, YAO Z, GLADSTONE G, et al. Are dawn storms Jupiter’s auroral substorms[J]. AGU Advances, 2021, 2: 1-14
    [114] JIANG J. Nonlinear mechanisms that regulate the solar cycle amplitude[J]. The Astrophysical Journal, 2020, 900: 19 doi: 10.3847/1538-4357/abaa4b
    [115] JIAO Q, JIANG J, WANG Z F. Sunspot tilt angles revisited: dependence on the solar cycle strength[J]. Astronomy & Astrophysics, 2021, 653: 1-14
    [116] TANG R X, ZENG X W, CHEN Z, et al. Multiple CNN variants and ensemble learning for sunspot group classification by magnetic type[J]. The Astrophysical Journal Supplement Series, 2021, 257: 38-47 doi: 10.3847/1538-4365/ac249f
    [117] TANG R X, LIAO W T, CHEN Z, et al. Solar flare prediction based on the fusion of multiple deep-learning models[J]. The Astrophysical Journal Supplement Series, 2021, 257: 50-62 doi: 10.3847/1538-4365/ac249e
    [118] KONG X, GUO F, SHEN C, et al. The acceleration and confinement of energetic electrons by a termination shock in a magnetic trap: an explanation for nonthermal loop-top sources during solar flares[J]. The Astrophysical Journal Letters, 2019, 887(2): 1-8
    [119] SAMANTA T, TIAN H, CHEN B, et al. Plasma heating induced by tadpole-like downflows in the flaring solar corona[J]. The Innovation, 2021, 2: 100083
    [120] CHEN A, YE Q, Wang J. Flare index prediction with machine learning algorithms[J]. Solar Physics, 2021, 296: 150 doi: 10.1007/s11207-021-01895-1
    [121] XING C, CHENG X, DING M. Evolution of the toroidal flux of CME flux ropes during Eruption[C]//American Astronomical Society Meeting. Honolulu: American Astronomical Society, 2020
    [122] ZHANG Q, WANG Y, LIU R, et al. Eruption of solar magnetic flux ropes caused by flux feeding[J]. The Astrophysical Journal, 2020, 898(1): L12 doi: 10.3847/2041-8213/aba1f3
    [123] GUO Y, XU Y, DING M D, et al. The magnetic flux rope structure of a triangulated solar filament[J]. The Astrophysical Journal, 2019, 884(1): 1-8 doi: 10.3847/1538-4357/ab40a8
    [124] GOU T, LIU R, KLIEM B, et al. The birth of a coronal mass ejection[J]. Science Advances, 2019, 5: eaau7004 doi: 10.1126/sciadv.aau7004
    [125] YE J, CAI Q, SHEN C, et al. Coronal wave trains and plasma heating triggered by turbulence in the wake of a CME[J]. The Astrophysical Journal, 2021, 909(1): 45 doi: 10.3847/1538-4357/abdeb5
    [126] JIANG C, FENG X, LIU R, et al. A fundamental mechanism of solar eruption initiation[J]. Nature Astronomy, 2021, 5: 1126-1138 doi: 10.1038/s41550-021-01414-z
    [127] ZHONG Z, GUO Y, DING M. The role of non-axisymmetry of magnetic flux rope in constraining solar eruptions[J]. Nature Communications, 2021, 12(1): 2734 doi: 10.1038/s41467-021-23037-8
    [128] ZHOU Z, CHENG X, ZHANG J, et al. Why do torus-unstable solar filaments experience failed eruptions?[J]. The Astrophysical Journal Letters, 2019, 877(2): L28 doi: 10.3847/2041-8213/ab21cb
    [129] YAN X, XUE Z, CHENG X, et al. Triggering mechanism and material transfer of a failed solar filament eruption[J]. The Astrophysical Journal, 2020, 889: 106 doi: 10.3847/1538-4357/ab61f3
    [130] LI T, HOU Y, YANG S, et al. Magnetic flux of active regions determining the eruptive character of large solar flares[J]. The Astrophysical Journal, 2020, 900: 128 doi: 10.3847/1538-4357/aba6ef
    [131] HONG J, LI Y, DING M D, et al. The response of the Lyα line in different flare heating models[J]. The Astrophysical Journal, 2019, 879(2): 128 doi: 10.3847/1538-4357/ab262e
    [132] YING B, BEMPORAD A, GIORDANO S, et al. First determination of 2D speed distribution within the bodies of coronal mass ejections[J]. The Astrophysical Journal, 2019, 880(1): 41 doi: 10.3847/1538-4357/ab2713
    [133] XIA F, SU Y, WANG W, et al. Detection of energy cutoffs in flare-accelerated electrons[J]. The Astrophysical Journal, 2021, 908(1): 111 doi: 10.3847/1538-4357/abce5c
    [134] NI S, CHEN Y, LI C, et al. Plasma emission induced by electron cyclotron maser instability in solar plasmas with a large ratio of plasma frequency to gyrofrequency[J]. The Astrophysical Journal, 2020, 891(1): 125
    [135] CHEN Y, ZHANG Z, NI S L, et al. Plasma emission induced by electron beam in weakly magnetized plasmas[J]. The Astrophysical Journal Letters, 2022, 924: L34 doi: 10.3847/2041-8213/ac47fa
    [136] NING H, CHEN Y, NI S, et al. Harmonic elctron-cyclotron maser emissions driven by energetic electrons of the horseshoe distribution with application to solar radio spikes[J]. Astronomy & Astrophysics, 2021, 651: 9
    [137] CHEN L, MA B, WU D, et al. An interplanetary type IIIb radio burst observed by parker solar probe and its emission mechanism[J]. The Astrophysical Journal Letters, 2021, 915(1): L22 doi: 10.3847/2041-8213/ac0b43
    [138] YANG Z, BETHGE C, TIAN H, et al. Global maps of the magnetic field in the solar corona[J]. Science, 2020, 369: 694-697
    [139] YANG Z, TIAN H, TOMCZYK S, et al. Mapping the magnetic field in the solar corona through magnetoseismology[J]. Science China Technological Sciences, 2020, 63(11): 2357-2368
    [140] CHEN Y, LI W, TIAN H, et al. Forward modeling of solar coronal magnetic-field measurements based on a magnetic-field-induced transition in Fe X[J]. The Astrophysical Journal, 2021, 920: 116 doi: 10.3847/1538-4357/ac1792
    [141] ZHOU Y, CHEN P, HONG J, et al. Simulations of solar filament fine structures and their counterstreaming flows[J]. Nature Astronomy, 2020, 4: 994-1000 doi: 10.1038/s41550-020-1094-3
    [142] SHI M, VAN DOORSSELAERE T, GUO M, et al. The first 3 D coronal loop model heated by MHD waves against radiative losses[J]. The Astrophysical Journal, 2021, 908: 233 doi: 10.3847/1538-4357/abda54
    [143] LIU J, NELSON C J, SNOW B, et al. Evidence of ubiquitous Alfvén pulses transporting energy from the photosphere to the upper chromosphere[J]. Nature Communications, 2019, 10: 3504 doi: 10.1038/s41467-019-11495-0
    [144] YUAN D, SHEN Y, LIU Y, et al. Multilayered Kelvin–Helmholtz instability in the solar corona[J]. The Astrophysical Journal, 2019, 884(2): 1-5
    [145] SAMANTA T, TIAN H, NAKARIAKOV V M. Evidence for vortex shedding in the sun’s hot corona[J]. Physical Review Letters, 2019, 123: 1-6
    [146] HUANG J, LIU Y, FENG H Q, et al. A statistical study of the plasma and composition distribution inside magnetic clouds: 1998–2011[J]. The Astrophysical Journal, 2020, 893: 136 doi: 10.3847/1538-4357/ab7a28
    [147] SONG H, CHENG X, LI L, et al. Comparison of helium abundance between ICMEs and solar wind near 1 AU[J]. The Astrophysical Journal, 2022, 925: 137 doi: 10.3847/1538-4357/ac3bbf
    [148] LYU S, WANG Y, LI X, et al. Three-dimensional reconstruction of coronal mass ejections by the correlation-aided reconstruction technique through different stereoscopic angles of the solar terrestrial relations observatory twin spacecraft[J]. The Astrophysical Journal, 2021, 909(2): 182 doi: 10.3847/1538-4357/abd9c9
    [149] LI X, WANG Y, GUO J, et al. Radial velocity map of solar wind transients in the field of view of STEREO/HI1 on 3 and 4 April 2010[J]. Astronomy and Astrophysics, 2021, 649: 58 doi: 10.1051/0004-6361/202039766
    [150] LIU Y, ZHU B, ZHAO X. Geometry, kinematics, and heliospheric impact of a large CME-driven shock in 2017 September[J]. The Astrophysical Journal, 2019, 871: 8 doi: 10.3847/1538-4357/aaf425
    [151] ZHAO X, LIU Y D, HU H, et al. Quantifying the propagation of fast coronal mass ejections from the sun to interplanetary space by combining remote sensing and multi-point in situ observations[J]. The Astrophysical Journal, 2019, 882(2): 122 doi: 10.3847/1538-4357/ab379b
    [152] CHEN B, ZHANG XX, HE LP, et al. Solar X-ray and EUV imager on board the FY-3 E satellite[J]. Light: Science & Applications, 2022, 11: 329
    [153] HOU Z, TIAN H, WANG JS, et al. Three-dimensional propagation of the global extreme-ultraviolet wave associated with a solar eruption on 2021 October 28[J]. The Astrophysical Journal, 2022, 928: 28 doi: 10.3847/1538-4357/ac4cb4
    [154] HUANG S Y, ZHANG J, SAHRAOUI F, et al. Kinetic scale slow solar wind turbulence in the inner heliosphere: coexistence of kinetic Alfvén waves and Alfvén ion cyclotron waves[J]. The Astrophysical Journal, 2020, 897(1): L3 doi: 10.3847/2041-8213/ab9abb
    [155] ZHU X, HE J, VERSCHAREN D, et al. Wave composition, propagation, and polarization of magnetohydrodynamic turbulence within 0.3 AU as observed by parker solar probe[J]. The Astrophysical Journal, 2020, 901(1): L3 doi: 10.3847/2041-8213/abb23e
    [156] WU H, TU C, WANG X, et al. Energy supply by low-frequency break sweeping for heating the fast solar wind from 0.3 to 4.8 AU[J]. The Astrophysical Journal, 2021, 912(2): 84-89 doi: 10.3847/1538-4357/abf099
    [157] HE J, ZHU X, YANG L, et al. Solar origin of compressive Alfvénic spikes/kinks as observed by parker solar probe[J]. The Astrophysical Journal Letters, 2021, 913: L14 doi: 10.3847/2041-8213/abf83d
    [158] LIU Y Y, FU H S, CAO J B, et al. Characteristics of Interplanetary Discontinuities in the Inner Heliosphere Revealed by Parker Solar Probe[J]. The Astrophysical Journal, 2021, 916: 65 doi: 10.3847/1538-4357/ac06a1
    [159] ZHAO G Q, LIN Y, WANG X Y, et al. Magnetic helicity signature and its role in regulating magnetic energy spectra and proton temperatures in the solar wind[J]. The Astrophysical Journal, 2021, 906(2): 123 doi: 10.3847/1538-4357/abca3b
    [160] WANG X, ZHAO L, TU C, et al. Alfvénicity of quiet-sun-associated wind during solar maximum[J]. The Astrophysical Journal, 2019, 871: 204 doi: 10.3847/1538-4357/aafa73
    [161] LIU Z, WANG L, SHI Q, et al. Case study of solar wind suprathermal electron acceleration at the earth’s bow shock[J]. The Astrophysical Journal, 2020, 889: L2 doi: 10.3847/2041-8213/ab64d0
    [162] WANG W, WANG L, KRUCKER S, et al. Solar energetic electron events associated with hard X-Ray flares[J]. The Astrophysical Journal, 2021, 913(2): 89 doi: 10.3847/1538-4357/abefce
    [163] HE H Q, WAN W. Propagation of solar energetic particles in the outer heliosphere: interplay between scattering and adiabatic focusing[J]. The Astrophysical Journal Letters, 2019, 885(2): l28 doi: 10.3847/2041-8213/ab50bd
    [164] LUO X, POTGIETER M S, BINDI V, et al. A numerical study of cosmic proton modulation using AMS-02 observations[J]. The Astrophysical Journal, 2019, 878(1): 6-17 doi: 10.3847/1538-4357/ab1b2a
    [165] SHEN Z, YANG H, ZUO P, et al. Solar modulation of galactic cosmic-ray protons based on a modified force-field approach[J]. The Astrophysical Journal, 2021, 921(2): 109 doi: 10.3847/1538-4357/ac1fe8
    [166] GUO X, FLORINSKI V, WANG C. A global MHD simulation of outer heliosphere including anomalous cosmic-rays[J]. The Astrophysical Journal, 2019, 879(2): 87 doi: 10.3847/1538-4357/ab262b
    [167] TANG B, LI W, GRAHAM D, et al. Crescent‐shaped electron distributions at the nonreconnecting magnetopause: magnetospheric multiscale observations[J]. Geophysical Research Letters, 2019, 46(6): 3024-3032 doi: 10.1029/2019GL082231
    [168] LI W Y, GRAHAM D B, KHOTYAINTSEV Y Y, et al. Electron bernstein waves driven by electron crescents near the electron diffusion region[J]. Nature Communications, 2020, 11: 141 doi: 10.1038/s41467-019-13920-w
    [169] FU H S, PENG F Z, LIU C M, et al. Evidence of electron acceleration at a reconnecting magnetopause[J]. Geophysical Research Letters, 2019, 46(11): 5645-5652 doi: 10.1029/2019GL083032
    [170] FU H S, CAO J B, CAO D, et al. Evidence of magnetic nulls in electron diffusion region[J]. Geophysical Research Letters, 2019, 46(1): 48-54 doi: 10.1029/2018GL080449
    [171] WANG Z, FU H S, VAIVADS A, et al. Monitoring the spatio-temporal evolution of a reconnection X-line in space[J]. The Astrophysical Journal, 2020, 899: L34 doi: 10.3847/2041-8213/abad2c
    [172] SUN T R, TANG B B, WANG C, et al. Large-scale characteristics of flux transfer events on the dayside magnetopause[J]. Journal of Geophysical Research: Space Physics, 2019, 124(4): 2425-2434
    [173] WANG S, WANG R, LU Q, et al. Energy dissipation via magnetic reconnection within the coherent structures of the magnetosheath turbulence[J]. Journal of Geophysical Research: Space Physics, 2021, 126(4): 1-13
    [174] LIU Y Y, FU H S, LIU C M, et al. Parallel electron heating by tangential discontinuity in the turbulent magnetosheath[J]. The Astrophysical Journal, 2019, 877: L16 doi: 10.3847/2041-8213/ab1fe6
    [175] HUANG S Y, XIONG Q Y, YUAN Z G, et al. Multi‐spacecraft measurement of anisotropic spatial correlation functions at kinetic range in the magnetosheath turbulence[J]. Journal of Geophysical Research: Space Physics, 2021, 126(5): 1-10
    [176] HE J, DUAN D, WANG T, et al. Direct measurement of the dissipation rate spectrum around ion kinetic scales in space plasma turbulence[J]. The Astrophysical Journal, 2019, 880: 121 doi: 10.3847/1538-4357/ab2a79
    [177] YAO S, SHI Q, YAO Z, et al. Waves in kinetic-scale magnetic dips: MMS observations in the magnetosheath[J]. Geophysical Research Letters, 2019, 46(2): 523-533 doi: 10.1029/2018GL080696
    [178] LIU H, ZONG Q G, ZHANG H, et al. MMS observations of electron scale magnetic cavity embedded in proton scale magnetic cavity[J]. Nature Communications, 2019, 10(1): 1-11
    [179] YANG Z, LIU Y, JOHLANDER A, et al. MMS direct observations of kinetic-scale shock self-reformation[J]. The Astrophysical Journal Letters, 2020, 901: 1-6 doi: 10.3847/1538-4357/abaa48
    [180] JIANG K, HUANG S Y, FU H S, et al. Observational evidence of magnetic reconnection in the terrestrial foreshock region[J]. The Astrophysical Journal, 2021, 922(1): 56 doi: 10.3847/1538-4357/ac2500
    [181] LU Q, WANG H, WANG X, et al. Turbulence‐driven magnetic reconnection in the magnetosheath downstream of a quasi‐parallel shock: a three‐dimensional global hybrid simulation[J]. Geophysical Research Letters, 2020, 47(1): 1-6
    [182] GUO Z, LIN Y, WANG X, et al. Magnetic reconnection inside solar wind rotational discontinuity during its interaction with the quasi‐perpendicular bow shock and magnetosheath[J]. Journal of Geophysical Research: Space Physics, 2021, 126(12): 1-13
    [183] LU S, WANG R, LU Q, et al. Magnetotail reconnection onset caused by electron kinetics with a strong external driver[J]. Nature Communications, 2020, 11: 5049 doi: 10.1038/s41467-020-18787-w
    [184] CHEN Z Z, FU H S, WANG Z, et al. First observation of magnetic flux rope inside electron diffusion region[J]. Geophysical Research Letters, 2021, 48: e2020GL089722
    [185] ZHOU M, DENG X H, ZHONG Z H, et al. Observations of an electron diffusion region in symmetric reconnection with weak guide field[J]. The Astrophysical Journal, 2019, 870: 34 doi: 10.3847/1538-4357/aaf16f
    [186] WANG S, WANG R, LU Q, et al. Direct evidence of secondary reconnection inside filamentary currents of magnetic flux ropes during magnetic reconnection[J]. Nature Communications, 2020, 11: 3964-3971 doi: 10.1038/s41467-020-17803-3
    [187] MANH Y, ZHOU M, YI Y Y, et al. Observations of electron‐only magnetic reconnection associated with macroscopic magnetic flux ropes[J]. Geophysical Research Letters, 2020, 47: e2020GL089659
    [188] REN Y, DAI L, LI W, et al. Whistler waves driven by field‐aligned streaming electrons in the near‐earth magnetotail reconnection[J]. Geophysical Research Letters, 2019, 46(10): 5045-5054 doi: 10.1029/2019GL083283
    [189] ZHOU M, HUANG J, MAN H Y, et al. Electron-scale vertical current sheets in a bursty bulk flow in the terrestrial magnetotail[J]. The Astrophysical Journal, 2019, 872: L26 doi: 10.3847/2041-8213/ab0424
    [190] WEI D, DUNLOP M W, YANG J, et al. Intense dB/dt variations driven by near‐Earth Bursty Bulk Flows (BBFs): a case study[J]. Geophysical Research Letters, 2021, 48(4): e2020GL091781
    [191] FU H S, XU Y, VAIVADS A, et al. Super-efficient electron acceleration by an isolated magnetic reconnection[J]. The Astrophysical Journal, 2019, 870: L22 doi: 10.3847/2041-8213/aafa75
    [192] FU H S, ZHAO M J, YU Y, et al. A new theory for energetic electron generation behind dipolarization front[J]. Geophysical Research Letters, 2020, 47(6): e2019GL086790
    [193] DAI L, WANG C, LAVRAUD B. Kinetic imprints of ion acceleration in collisionless magnetic reconnection[J]. The Astrophysical Journal, 2021, 919: 15 doi: 10.3847/1538-4357/ac0fde
    [194] MA W, ZHOU M, ZHONG Z, et al. Electron acceleration rate at dipolarization fronts[J]. The Astrophysical Journal, 2020, 903: 84 doi: 10.3847/1538-4357/abb8cc
    [195] LIU C, FU H, LIU Y, et al. Electron pitch-angle distribution in earth’s magnetotail: pancake, cigar, isotropy, butterfly, and rolling-pin[J]. Journal of Geophysical Research: Space Physics, 2020, 125(4): e2020JA027777
    [196] CHEN G, FU H, ZHANG Y, et al. Energetic electron acceleration in unconfined reconnection jets[J]. The Astrophysical Journal Letters, 2019, 881: L8 doi: 10.3847/2041-8213/ab3041
    [197] HUANG S Y, JIANG K, YUAN Z G, et al. Observations of flux ropes with strong energy dissipation in the magnetotail[J]. Geophysical Research Letters, 2019, 46(2): 580-589 doi: 10.1029/2018GL081099
    [198] JIANG K, HUANG S Y, YUAN Z G, et al. Statistical properties of current, energy conversion, and electron acceleration in flux ropes in the terrestrial magnetotail[J]. Geophysical Research Letters, 2021, 48(11): e2021GL093458
    [199] XU Y, FU H S, CAO J, et al. Electron-scale measurements of antidipolarization front[J]. Geophysical Research Letters, 2021, 48(6): e2020GL092232
    [200] ZHAO M J, FU H S, LIU C M, et al. Energy range of electron rolling pin distribution behind dipolarization front[J]. Geophysical Research Letters, 2019, 46(5): 2390-2398 doi: 10.1029/2019GL082100
    [201] LIU N, SU Z, GAO Z, et al. Magnetospheric chorus, exohiss, and magnetosonic emissions simultaneously modulated by fundamental toroidal standing Alfvén waves following solar wind dynamic pressure fluctuations[J]. Geophysical Research Letters, 2019, 46(4): 1900-1910 doi: 10.1029/2018GL081500
    [202] ZHU M, YU Y, JORDANOVA V K. Simulating the effects of warm O+ ions on the growth of electromagnetic ion cyclotron (EMIC) waves[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2021, 224: 105737 doi: 10.1016/j.jastp.2021.105737
    [203] CAO X, NI B, SUMMERS D, et al. Sensitivity of EMIC wave-driven scattering loss of ring current protons to wave normal angle distribution[J]. Geophysical Research Letters, 2019, 46(2): 590-598 doi: 10.1029/2018GL081550
    [204] NI B, HUA M, GU X, et al. Artificial modification of Earth’s radiation belts by ground-based very-low-frequency (VLF) transmitters[J]. Science China Earth Sciences, 2022, 65: 391-413 doi: 10.1007/s11430-021-9850-7
    [205] ZHOU R, NI B, FU S, et al. Global distribution of concurrent EMIC waves and magnetosonic waves: a survey of van allen probes observations[J]. Journal of Geophysical Research: Space Physics, 2022, 127(1): 1-11
    [206] TAO X, ZONCA F, CHEN L. A “Trap‐Release‐Amplify” model of chorus waves[J]. Journal of Geophysical Research: Space Physics, 2021, 126(9): e2021JA029585
    [207] GAO X, CHEN L, LI W, et al. Statistical results of the power gap between lower‐band and upper‐band chorus waves[J]. Geophysical Research Letters, 2019, 46(8): 4098-4105 doi: 10.1029/2019GL082140
    [208] GU X, XIA S, FU S, et al. Dynamic responses of radiation belt electron fluxes to magnetic storms and their correlations with magnetospheric plasma wave activities[J]. The Astrophysical Journal, 2020, 891: 127 doi: 10.3847/1538-4357/ab71fc
    [209] NI B, HUANG H, ZHANG W, et al. Parametric Sensitivity of the Formation of Reversed Electron Energy Spectrum Caused by Plasmaspheric Hiss[J]. Geophysical Research Letters, 2019, 46(8): 4134-4143 doi: 10.1029/2019GL082032
    [210] HUA M, LI W, NI B, et al. Very-Low-Frequency transmitters bifurcate energetic electron belt in near-earth space[J]. Nature communications, 2020, 11: 4847 doi: 10.1038/s41467-020-18545-y
    [211] HUA M, NI B, LI W, et al. Statistical distribution of bifurcation of Earth’s inner energetic electron belt at tens of keV[J]. Geophysical Research Letters, 2021, 48(3): e2020GL091242
    [212] NI B, ZHANG Y, GU X. Identification of ring current proton precipitation driven by scattering of electromagnetic ion cyclotron waves[J]. Fundamental Research, 2022, 2: 2667
    [213] GU X, WANG Q, NI B, et al. First results of the wave measurements by the WHU VLF wave detection system at the Chinese great wall station in Antarctica[J]. Journal of Geophysical Research: Space Physics, 2022, 127(9): e2022JA030784
    [214] FU H, YUE C, MA Q, et al. Frequency‐dependent responses of plasmaspheric hiss to the impact of an interplanetary shock[J]. Geophysical Research Letters, 2021, 48(20): e2021GL094810
    [215] DAI G, SU Z, LIU N, et al. Quenching of equatorial magnetosonic waves by substorm proton injections[J]. Geophysical Research Letters, 2019, 46(12): 6156 doi: 10.1029/2019GL082944
    [216] WU Z, SU Z, LIU N, et al. Off‐equatorial source of magnetosonic waves extending above the lower hybrid resonance frequency in the inner magnetosphere[J]. Geophysical Research Letters, 2021, 48(6): e2020GL091830
    [217] YUAN Z, YAO F, YU X, et al. An automatic detection algorithm applied to fast magnetosonic waves with observations of the van Allen probes[J]. Journal of Geophysical Research: Space Physics, 2019, 124(5): 3501-3511 doi: 10.1029/2018JA026387
    [218] YUAN Z, YAO F, YU X, et al. Ionospheric signatures of ring current ions scattered by magnetosonic waves[J]. Geophysical Research Letters, 2020, 47: e2020GL089032
    [219] NI B, YAN L, FU S, et al. Distinct formation and evolution characteristics of outer radiation belt electron butterfly pitch angle distributions observed by van allen probes[J]. Geophysical Research Letters, 2020, 47: e2019GL086487
    [220] REN J, ZONG Q G, ZHOU X Z, et al. Cold plasmaspheric electrons affected by ULF waves in the inner magnetosphere: a van Allen probes statistical study[J]. Journal of Geophysical Research: Space Physics, 2019, 124(10): 7954-7965 doi: 10.1029/2019JA027009
    [221] LIU Z, ZONG Q G, ZHOU X Z, et al. Pitch angle structures of ring current ions induced by evolving poloidal ultra‐low frequency waves[J]. Geophysical Research Letters, 2020, 47: e2020GL087203
    [222] HAO Y Z, ZONG Q G, ZHOU X Z, et al. Global scale ULF waves associated with SSC accelerate magnetospheric ultra-relativistic electrons: ULF ultra-relativistic electron[J]. Journal of Geophysical Research: Space Physics, 2019, 124(3): 1525-1538 doi: 10.1029/2018JA026134
    [223] LI Y X, YUE C, HAO Y X, et al. The characteristics of three‐belt structure of sub‐MeV electrons in the radiation belts[J]. Journal of Geophysical Research: Space Physics, 2021, 126(7): 1-11
    [224] YUE C, ZHOU X Z, BORTNIK J, et al. Sustained oxygen spectral gaps and their dynamic evolution in the inner magnetosphere[J]. Journal of Geophysical Research: Space Physics, 2021, 126(4): 1-11
    [225] YUE C, LIU Y, ZHOU X, et al. MLT‐dependence of sustained spectral gaps of proton and oxygen in the inner magnetosphere[J]. Journal of Geophysical Research: Space Physics, 2021, 126(12): 1-9
    [226] REN J, ZONG Q G, YUE C, et al. Simultaneously formed wedge‐like structures of different ion species deep in the inner magnetosphere[J]. Journal of Geophysical Research: Space Physics, 2020, 125(12): 1-11
    [227] WANG C, XU J Y, DAREN L, et al. Construction progress of Chinese meridian project phase II[J]. Chinese Journal of Space Science, 2022, 42: 539-45
    [228] ZHANG J J, WANG W, WANG C, et al. First observation of ionospheric convection from the jiamusi HF radar during a strong geomagnetic storm[J]. Earth and Space Science, 2020, 7: e2019EA000911
    [229] WANG W, ZHANG J J, WANG C, et al. Statistical characteristics of mid‐latitude ionospheric irregularities at geomagnetic quiet time: observations from the jiamusi and hokkaido east superDARN HF radars[J]. Journal of Geophysical Research: Space Physics, 2022, 127(1): e2021JA029502
    [230] YUE X N, WAN W X, NING B Q, et al. An active phased array radar in China[J]. Nature Astronomy, 2022, 6: 619 doi: 10.1038/s41550-022-01684-1
    [231] YUE X N, WAN W X, XIAO H, et al. Preliminary experimental results by the prototype of Sanya Incoherent Scatter Radar[J]. Earth and Planetary Physics, 2020, 4: 1-9
    [232] LI M Y, YUE X N, WANG Y H, et al. Moon imaging technique and experiments based on Sanya incoherent scatter radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-14
    [233] ZHANG N, YUE X N, DING F, et al. Initial tropospheric wind observations by Sanya incoherent scatter radar[J]. Remote Sensing, 2022, 14: 3138 doi: 10.3390/rs14133138
    [234] LIU Y, ZHANG Z K, LEI J H, et al. Design and construction of Keda Space Plasma Experiment (KSPEX) for the investigation of the boundary layer processes of ionospheric depletions[J]. Review of Scientific Instruments, 2016, 87(9): 1-9
    [235] LING Y M, LIU Y, LEI J H, et al. Laboratory evidence of a pre-existing instability that can enhance the ionospheric heating efficiency[J]. Geophysical Research Letters, 2021, 48(9): 1-8
    [236] ZHANG X X, CHEN B, HE F, et al. Wide-field auroral imager onboard the Fengyun satellite[J], Light: Science & Applications, 2019, 8: 47
    [237] HE F, GUO R L, DUNN W R, et al. Plasmapause surface wave oscillates the magnetosphere and diffuse aurora[J]. Nature Communications, 2020, 11: 1668 doi: 10.1038/s41467-020-15506-3
    [238] SHEN X H, ZHANG X M, YUAN S G, et al. The state-of-the-art of the China Seismo-Electromagnetic Satellite mission[J]. Science China Technological Sciences, 2018, 61(5): 634-642 doi: 10.1007/s11431-018-9242-0
    [239] YAN R, ZHIMA Z, XIONG C, et al. Comparison of electron density and temperature from the CSES satellite with other space‐borne and ground‐based observations[J]. Journal of Geophysical Research: Space Physics, 2020, 125(10): 1-17
    [240] YANG Y Y, HULOT G, VIGNERON P, et al. The CSES Global Geomagnetic Field Model (CGGM): An IGRF type global geomagnetic field model based on data from the China Seismo-Electromagnetic Satellite[J]. Earth, Planets and Space, 2021, 73(1): 45 doi: 10.1186/s40623-020-01316-w
    [241] WANG Y, FU L, JIANG F, et al. Far-ultraviolet airglow remote sensing measurements on Feng Yun 3-D meteorological satellite[J]. Atmospheric Measurement Techniques, 2022, 15: 1577-1586 doi: 10.5194/amt-15-1577-2022
    [242] MAO T, SUN L, YANG G, et al. First ionospheric radio-occultation measurements from GNSS occultation sounder on the Chinese Feng-Yun 3 C satellite[J]. IEEE Transactions on Geoscience & Remote Sensing, 2016, 54(9): 5044-5053
    [243] REN Z P, WAN W X, LIU L B. GCITEM-IGGCAS: A new global coupled ionosphere –thermosphere-electrodynamics model[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2009, 71: 2064-76 doi: 10.1016/j.jastp.2009.09.015
    [244] DANG T, ZHANG B Z, LEI J H, et al. Azimuthal averaging–reconstruction filtering techniques for finite-difference general circulation models in spherical geometry[J]. Geoscientific Model Development, 2021, 14: 859-873 doi: 10.5194/gmd-14-859-2021
    [245] REN D X, LEI J H. A long-range forecasting model for the thermosphere based on the intelligent optimized particle filtering[J]. Science China Earth Sciences, 2021, 65: 75-86
    [246] HE J H, YUE X N, WANG W B, et al. EnKF ionosphere and thermosphere data assimilation algorithm through a sparse matrix method[J]. Journal of Geophysical Research: Space Physics, 2019, 124: 7356-7365 doi: 10.1029/2019JA026554
    [247] CHEN Z, JIN M, DENG Y, et al. Improvement of a deep learning algorithm for total electron content maps: image completion[J]. Journal of Geophysical Research: Space Physics, 2019, 124(1): 790-800 doi: 10.1029/2018JA026167
    [248] CHEN Z, LIAO W, LI H, et al. Prediction of global ionosphere TEC base on deep learning[J]. Space Weather, 2021, 20: e2021SW002854
    [249] TANG R X, ZENG F T, CHEN Z, et al. The comparison of predicting storm-time ionospheric tec by three methods: ARIMA, LSTM, and seq2 seq[J]. Atmosphere, 2020, 11: 316 doi: 10.3390/atmos11040316
    [250] WANG P, CHEN Z, DENG X, et al. The comparison of predicting storm-time thermospheric mass density by LSTM-based ensemble learning and NRLMSISE-00[J]. Space Weather, 2022, 20: e2021SW002950
    [251] WANG J S, CHEN Z, HUANG C M. A method to identify aperiodic disturbances in the ionosphere[J]. Annals of Geophysics, 2014, 32(5): 563-569 doi: 10.5194/angeo-32-563-2014
    [252] CHEN Z, WANG J S, DENG Y, et al. Extraction of the geomagnetic activity effect from TEC data: a comparison between the spectral whitening method and 28 day running median[J]. Journal of Geophysical Research: Space Physics, 2017a, 122(3): 3632-3639
    [253] CHEN Z, WANG JS, DENG X, et al. Study on the relationship between the residual 27 day quasiperiodicity and ionospheric Q disturbances[J]. Journal of Geophysical Research: Space Physics, 2017b, 122(2): 2542-2550
    [254] LI H, CHEN Z, XIE L, et al. A qualitative study of the ionospheric weak response to super geomagnetic storms[J]. Atmosphere, 2020, 11(6): 635 doi: 10.3390/atmos11060635
    [255] CHEN Z, WANG JS, HUANG CM, et al. A new pair of indices to describe the relationship between ionospheric disturbances and geomagnetic activity[J]. Journal of Geophysical Research: Space Physics, 2014, 119(12): 156-163
    [256] LI H, WANG J S, CHEN Z, et al. The contribution of geomagnetic activity to ionospheric f0F2 trends at different phases of the solar cycle by SWM[J]. Atmosphere, 2020, 11(6): 616 doi: 10.3390/atmos11060616
    [257] SONG Q, YE Q, ZHANG X X, et al. Performance evaluation of modified IRI2016 and its application to the 24 hr ahead forecast f0F2 mapping over China[J]. Journal of Geophysical Research: Space Physics, 2022, 127: e2022JA030873
    [258] LIU L B, WAN W X. Recent ionospheric investigations in China (2018–2019)[J]. Earth and Planetary Physics, 2020, 4: 179-205 doi: 10.26464/epp2020028
    [259] LIU L, LEI J, LIU J. Ionospheric investigations conducted by Chinese mainland scientists in 2020 –2021[J]. Chinese Journal of Space Science, 2022, 42(4): 653-683
    [260] LIU J, WANG W X, QIAN L Y, et al. Solar flare effects in the Earth’s magnetosphere[J]. Nature Physics, 2021, 17: 807-812
    [261] CHEN X T, DANG T, ZHANG B Z, et al. Global effects of a polar solar eclipse on the coupled magnetosphere‐ionosphere system[J]. Geophysical Research Letters, 2021, 48(23): e2021GL096471
    [262] LI G Z, NING B Q, OTSUKA Y C, et al. Challenges to equatorial plasma bubble and ionospheric scintillation short-term forecasting and future aspects in east and southeast Asia[J]. Surveys in Geophysics, 2021, 42: 201-238 doi: 10.1007/s10712-020-09613-5
    [263] LI Z, LEI J, ZHANG B. Numerical considerations in the simulation of equatorial spread F[J]. Journal of Geophysical Research: Space Physics, 2021, 126(10): 1-15
    [264] CHEN X T, LEI J H, DEXIN R, et al. A deep learning model for the thermospheric nitric oxide emission[J]. Space Weather, 2021, 19(3): e2020SW002619
    [265] ZHAO X K, LI G Z, XIE H Y, et al. The prediction of day‐to‐day occurrence of low latitude ionospheric strong scintillation using gradient boosting algorithm[J]. Space Weather, 2021, 19(12): e2021SW002884
    [266] YU T, WANG W, REN Z, et al. Middle‐low latitude neutral composition and temperature responses to the 20‐21 November 2003 superstorm from GUVI dayside limb measurements[J]. Journal of Geophysical Research: Space Physics, 2021, 126(8): 1-13
    [267] LI J, WANG W, LU J, et al. A modeling study of the responses of Mesosphere and Lower Thermosphere (MLT) winds to geomagnetic storms at middle latitudes[J]. Journal of Geophysical Research: Space Physics, 2019, 124(5): 3666-3680 doi: 10.1029/2019JA026533
    [268] ZHU Y J, KAUFMANN M, CHEN Q, et al. A comparison of OH nightglow volume emission rates as measured by SCIAMACHY and SABER[J]. Atmospheric Measurement Techniques, 2020, 13: 3033-3042 doi: 10.5194/amt-13-3033-2020
    [269] LIU Z D, LI Q F, FANG H X, et al. Longitudinal structure in the altitude of the sporadic E observed by COSMIC in low-latitudes[J]. Remote Sensing, 2021, 13: 4714 doi: 10.3390/rs13224714
    [270] LIU Z D, FANG H X, YUE X N, et al. Wavenumber‐4 patterns of the sporadic E over the middle‐ and low‐latitudes[J]. Journal of Geophysical Research: Space Physics, 2021, 126(8): 1-13
    [271] TANG Q, ZHAO J Q, YU Z B, et al. Occurrence and variations of middle and low latitude sporadic E layer investigated with longitudinal and latitudinal chains of ionosondes[J]. Space Weather, 2021, 19(12): e2021SW002942
    [272] YU T T, WANG W B, REN Z P, et al. The response of middle thermosphere (~160 km) composition to the 20-21 November 2003 superstorm[J]. Journal of Geophysical Research: Space Physics, 2021, 126(10): 1-21
    [273] ANDRIOLI V, XU J Y, BATISTA P, et al. Nocturnal and seasonal variation of Na and K layers simultaneously observed in the MLT region at 23°S[J]. Journal of Geophysical Research: Space Physics, 2020, 125: e2019JA027164
    [274] XUN Y C, YANG G T, SHE C Y, et al. The first concurrent observations of thermospheric Na layers from two nearby central midlatitude lidar stations[J]. Geophysical Research Letters, 2019, 46(4): 1892-1899 doi: 10.1029/2018GL081645
    [275] WU J F, WUHU F, LIU H L, et al. Self-consistent global transport of metallic ions with WACCM-X[J]. Atmospheric Chemistry and Physics, 2021, 21: 15619-15630 doi: 10.5194/acp-21-15619-2021
    [276] XU J Y, LI Q Z, SUN L C, et al. The Ground‐Based Airglow Imager Network in China: Recent Observational Results [M]// American Geophysical Union. Upper Atmosphere Dynamics and Energetics. New Orleans: American Geophysical Union, 2021: 365-394
    [277] LIU X, XU J Y, YUE J, et al. Orographic primary and secondary gravity waves in the middle atmosphere from 16‐year SABER observations[J]. Geophysical Research Letters, 2019, 46(8): 4512-4522 doi: 10.1029/2019GL082256
    [278] LIU X, XU J Y, YUE J. Global static stability and its relation to gravity waves in the middle atmosphere[J]. Earth and Planetary Physics, 2020, 4: 1-9
    [279] YANG Z X, HUANG K M, WANG R, ZHANG S D. An observational study of inertia gravity waves in the lower stratosphere over the Arctic[J]. Chinese Journal of Geophysics, 2019, 62(8): 2793-2805
    [280] NING W, HUANG K M, ZHANG S, et al. A statistical investigation of inertia gravity wave activity based on MST radar observations at Xianghe (116.9°E, 39.8°N), China[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(1): 1-19
    [281] HUANG K M, YANG Z, WANG R, et al. A statistical study of inertia gravity waves in the lower stratosphere over the arctic region based on radiosonde observations[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(10): 4958-4976 doi: 10.1029/2017JD027998
    [282] LI X, WAN W X, CAO J B, et al. Wavenumber-4 spectral component extracted from TIMED/SABER observations[J]. Earth and Planetary Physics, 2020, 4: 1-13
    [283] LI X, WAN W X, CAO J B, et al. Meteorological scale correlation relationship of the ionospheric longitudinal structure wavenumber 4 and upper atmospheric daily DE3 tide[J]. Journal of Geophysical Research: Space Physics, 2019, 124(3): 2046-2057 doi: 10.1029/2018JA026253
    [284] CHEN T, WAN W, XIONG J, et al. A Statistical Approach to quantify atmospheric contributions to the ITEC WN4 structure over low latitudes[J]. Journal of Geophysical Research: Space Physics, 2019, 124(3): 2178-2197 doi: 10.1029/2018JA026090
    [285] GONG Y, MA Z, LI C, et al. Characteristics of the quasi-16-day wave in the mesosphere and lower thermosphere region as revealed by meteor radar, Aura satellite, and MERRA2 reanalysis data from 2008 to 2017[J]. Earth and Planetary Physics, 2020, 4: 274-284 doi: 10.26464/epp2020033
    [286] CHENG H, HUANG K M, LIU A, et al. A quasi-27-day oscillation activity from the troposphere to the mesosphere and lower thermosphere at low latitudes[J]. Earth, Planets and Space, 2021, 73: 183 doi: 10.1186/s40623-021-01521-1
    [287] LI J, LI T, WU Q, et al. Characteristics of Small‐Scale Gravity Waves in the Arctic Winter Mesosphere[J]. Journal of Geophysical Research: Space Physics, 2020, 125(6): 1-12
    [288] ZHAO X R, SHENG Z, SHI H, et al. Middle atmosphere temperature changes derived from SABER observations during 2002-2020[J]. Journal of Climate, 2021, 34(1): 7995-8012
    [289] SUN C, YANG C Y, LI T. Dynamical influence of the Madden-Julian oscillation on the Northern Hemisphere mesosphere during the boreal winter[J]. Science China Earth Sciences, 2021, 64: 1254-1266 doi: 10.1007/s11430-020-9779-2
    [290] SUN Y Y, LIU H X, MIYOSHI Y B, et al. Niño–southern oscillation effect on ionospheric tidal/SPW amplitude in 2007-2015 FORMOSAT-3/COSMIC observations[J]. Earth, Planets and Space, 2019, 71: 35 doi: 10.1186/s40623-019-1009-7
    [291] YANG C Y, SMITH A, LI T, et al. The effect of the madden-julian oscillation on the mesospheric migrating diurnal tide: a study using SD-WACCM[J]. Geophysical Research Letters, 2018, 45(10): 5105-5114 doi: 10.1029/2018GL077956
    [292] MA Z, GONG Y, ZHANG S, et al. Study of mean wind variations and gravity wave forcing via a meteor radar chain and comparison with HWM-07 results[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(17): 9488-9501 doi: 10.1029/2018JD028799
    [293] LIU X, XU J, YUE J, et al. Gravity-wave-perturbed wind shears derived from SABER temperature observations[J]. Atmospheric Chemistry & Physics, 2020, 20: 14437-14456
    [294] BAI X Y, HUANG K M, ZHANG S D, et al. Anomalous changes of temperature and ozone QBOs in 2015-2017 from radiosonde observation and MERRA-2 reanalysis[J]. Earth and Planetary Physics, 2021, 5: 1-10
    [295] WANG H Z, XIAO C, SHI Q Q, et al. Energetic neutral atom distribution on the lunar surface and its relationship with solar wind conditions[J]. The Astrophysical Journal Letters, 2021, 922: L41 doi: 10.3847/2041-8213/ac34f3
    [296] ZHANG B, DELAMERE P A, YAO Z, et al. How Jupiter’s unusual magnetospheric topology structures its aurora[J]. Science Advances, 2021, 7(15): eabd1204 doi: 10.1126/sciadv.abd1204
    [297] XIE L H, LI L, ZHANG A B, et al. Inside a lunar mini‐magnetosphere: first energetic neutral atom measurements on the lunar surface[J]. Geophysical Research Letters, 2021, 48(14): e2021GL093943
    [298] LUO P X, ZHANG X P, FU S, et al. First measurements of low-energy cosmic rays on the surface of the lunar farside from Chang’E-4 mission[J]. Science Advances, 2022, 8: 1760 doi: 10.1126/sciadv.abk1760
    [299] LI L, ZHANG Y T, ZHOU B, et al. Lunar surface potential and electric field[J]. Research in Astronomy and Astrophysics, 2019, 19: 15-22 doi: 10.1088/1674-4527/19/1/15
    [300] XIE L H, ZHANG X P, LI L, et al. Lunar dust fountain observed near twilight craters[J]. Geophysical Research Letters, 2020, 47(23): e2020GL089593
    [301] LI D T, WANG Y, ZHANG H, et al. In situ measurements of lunar dust at the Chang’E‐3 landing site in the northern mare Imbrium[J]. Journal of Geophysical Research: Planets, 2019, 124(8): 2168-2177 doi: 10.1029/2019JE006054
    [302] ZHONG J, SHUE J H, WEI Y, et al. Effects of orbital eccentricity and IMF cone angle on the dimensions of mercury’s magnetosphere[J]. The Astrophysical Journal, 2020, 892: 2 doi: 10.3847/1538-4357/ab7819
    [303] ZHONG J, WEI Y, LEE L C, et al. Formation of macroscale flux transfer events at mercury[J]. The Astrophysical Journal, 2020, 893: L18 doi: 10.3847/2041-8213/ab8566
    [304] ZHAO J T, ZONG Q G, YUE C, et al. Observational evidence of ring current in the magnetosphere of Mercury[J]. Nature Communications, 2022, 13(1): 1-10
    [305] SHI Z, RONG Z J, FATEMI S, et al. An eastward current encircling mercury[J]. Geophysical Research Letters, 2022, 49(10): 1-10
    [306] GAO J W, RONG Z J, PERSSON M, et al. In situ observations of the ion diffusion region in the venusian magnetotail[J]. Journal of Geophysical Research: Space Physics, 2021, 126(1): 1-13
    [307] WANG X J, XU X, YE Y D, et al. MAVEN observations of the Kelvin‐Helmholtz instability developing at the ionopause of Mars[J]. Geophysical Research Letters, 2022, 49(7): e2022GL098673
    [308] DANG T, LEI J H, ZHANG B Z, et al. Oxygen ion escape at Venus associated with three‐dimensional Kelvin‐Helmholtz instability[J]. Geophysical Research Letters, 2022, 49(6): e2021GL096961
    [309] LIU D, RONG Z, GAO J W, et al. Statistical properties of solar wind upstream of Mars: MAVEN observations[J]. The Astrophysical Journal, 2021, 911(2): 113-122 doi: 10.3847/1538-4357/abed50
    [310] CAO Y T, CUI J, WU X H, et al. A survey of photoelectrons on the nightside of Mars[J]. Geophysical Research Letters, 2021, 48(2): e2020GL089998
    [311] WU S Q, WU X S, CUI J, et al. Species-dependent solar rotation effects on the Martian ionosphere[J]. Monthly Notices of the Royal Astronomical Society, 2022, 513: 1293-1299 doi: 10.1093/mnras/stac988
    [312] HAN Q Q, FAN K, CUI J, et al. The relationship between photoelectron boundary and steep electron density gradient on Mars: MAVEN observations[J]. Journal of Geophysical Research: Space Physics, 2019, 124(10): 8015-8022 doi: 10.1029/2019JA026739
    [313] GUO Z, FU H, CAO J, et al. Betatron cooling of electrons in Martian magnetotail[J]. Geophysical Research Letters, 2021, 48(13): 1-10
    [314] CHAI L H, WAN W X, WEI Y, et al. The induced global looping magnetic field on Mars[J]. The Astrophysical Journal, 2019, 871(2): L27-1233 doi: 10.3847/2041-8213/aaff6e
    [315] CUI J, NIU D D, HAO G, et al. Energetic electron depletions in the nightside Martian upper atmosphere revisited[J]. Journal of Geophysical Research: Space Physics, 2020, 125(4): e2019JA027670
    [316] FAN K, YAN L M, WEI Y, et al. The solar wind plasma upstream of Mars observed by Tianwen-1: comparison with Mars express and MAVEN Mars orbiter magnetometer of China’s First Mars Mission Tianwen-1 the solar wind plasma upstream of Mars observed by Tianwen-1: comparison with Mars express and MAVEN[J]. Science China Earth Sciences, 2022, 65(4): 759-768 doi: 10.1007/s11430-021-9917-0
    [317] XIE L H, LEE L C. A new mechanism for the field line twisting in the ionospheric magnetic flux rope[J]. Journal of Geophysical Research: Space Physics, 2019, 124(5): 3266-3275 doi: 10.1029/2019JA026621
    [318] XIE L H, LEE L C, LI L, et al. Multifluid MHD studies of the ionospheric magnetic flux ropes at Mars[J]. The Astrophysical Journal, 2021, 915(1): 6-10 doi: 10.3847/1538-4357/abfdaf
    [319] YAO Z H, BONFOND B, CLARK G, et al. Reconnection and dipolarization driven auroral dawn storms and injections[J]. Journal of Geophysical Research: Space Physics, 2020, 125(8): 1-13
    [320] GUO R L, YAO Z H, GRODENT D, et al. Jupiter’s double‐arc aurora as a signature of magnetic reconnection: simultaneous observations from HST and JunoJupiter’s double‐arc aurora as a signature of magnetic reconnection: simultaneous observations from HST and Juno[J]. Geophysical Research Letters, 2021, 48(14): 1-14
    [321] PAN D X, YAO Z H, GUO R L, et al. A statistical survey of low‐frequency magnetic fluctuations at saturn[J]. Journal of Geophysical Research: Space Physics, 2021, 126(2): 1-9
    [322] WU S Y, YE S Y, FISCHER G, et al. Statistical study on spatial distribution and polarization of saturn narrowband emissions[J]. The Astrophysical Journal, 2021, 918(2): 64-68 doi: 10.3847/1538-4357/ac0af1
    [323] YE S Y, AVERKAMP T, KURTH W, et al. Juno waves detection of dust impacts near Jupiter[J]. Journal of Geophysical Research: Planets, 2020, 125(6): e2019JE006367
    [324] HAO Y X, SUN Y X, ROUSSOS E, et al. The formation of saturn’s and Jupiter’s electron radiation belts by magnetospheric electric fields[J]. The Astrophysical Journal, 2020, 905(1): 10-22 doi: 10.3847/1538-4357/abbfb3
    [325] 刘维宁, BLANC M, 王赤, 等. 国际子午圈计划的科学挑战和观测系统[J]. 中国科学: 地球科学, 2021, 51(12): 2056-2062

    LIU Weining, BLANC M, WANG Chi, et al. Scientific challenges and instrumentation for the International Meridian Circle Program[J]. Science China Earth Sciences, 2021, 64(12): 2090−2097
    [326] WANG J J, LIU S Q, AO X Z, et al. Parameters derived from the SDO/HMI vector magnetic field data: potential to improve machine-learning-based solar flare prediction models[J]. The Astrophysical Journal, 2019, 884(2): 175-182 doi: 10.3847/1538-4357/ab441b
    [327] WANG P Y, ZHANG Y, FENG L, et al. A new automatic tool for CME detection and tracking with machine-learning techniques[J]. The Astrophysical Journal Supplement Series, 2019, 244(1): 9-19 doi: 10.3847/1538-4365/ab340c
  • 加载中
表(1)
计量
  • 文章访问数:  665
  • HTML全文浏览量:  403
  • PDF下载量:  375
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-13
  • 录用日期:  2023-01-08
  • 修回日期:  2023-01-08
  • 网络出版日期:  2023-02-10

目录

    /

    返回文章
    返回