Volume 38 Issue 3
May  2018
Turn off MathJax
Article Contents
ZHANG Li, LI Yourong, LIU Lina, WU Chunmei. Transition Process of Supercritical Thermocapillary Convection in a Shallow Annular Pool for Low Prandtl Number Fluids[J]. Chinese Journal of Space Science, 2018, 38(3): 373-379. doi: 10.11728/cjss2018.03.373
Citation: ZHANG Li, LI Yourong, LIU Lina, WU Chunmei. Transition Process of Supercritical Thermocapillary Convection in a Shallow Annular Pool for Low Prandtl Number Fluids[J]. Chinese Journal of Space Science, 2018, 38(3): 373-379. doi: 10.11728/cjss2018.03.373

Transition Process of Supercritical Thermocapillary Convection in a Shallow Annular Pool for Low Prandtl Number Fluids

doi: 10.11728/cjss2018.03.373
  • Received Date: 2017-08-22
  • Rev Recd Date: 2018-01-24
  • Publish Date: 2018-05-15
  • In order to understand the transition process of thermocapillary convection of low Prandtl number (Pr) fluids, a series of three-dimensional numerical simulations on thermocapillary convection of Pr=0.011 fluid in a shallow annular pool are performed. Results indicate that the flow is axisymmetric steady flow at a small Marangoni number. When Marangoni number exceeds a critical value, the flow destabilizes and bifurcates to the hydrothermal wave. In this case, the wave number decreases and the fundamental frequency increases with the increase of Marangoni number. When Marangoni number continue increasing, the hydrothermal waves are enhanced and bifurcated to the radial waves. During this transition, there exists a sharp drop of the wave number. Finally, the noise on frequency spectrum increases and behaves in multi-frequencies. Therefore, the bifurcation route of thermocapillary convection is from axisymmetric steady flow, hydrothermal wave, radial waves with one frequency to three-dimensional oscillatory flow with multi-frequencies.

     

  • loading
  • [1]
    HU W R, TANG Z M, LI K. Thermocapillary convection in floating zones[J]. Appl. Mech. Rev., 2008, 61(1):010803
    [2]
    AVRAMENKO A A, SHEVEHUK I V, HARMAND S, et al. Thermocapillary instability in an evaporating two-dimensional thin layer film[J]. Int. J. Heat Mass Tran., 2015, 91:77-88
    [3]
    AKTERSHEV S P. Stability of the heated liquid film in the presence of the thermocapillary effect[J]. Thermophys. Aeromech., 2013, 20(1):1-16
    [4]
    SOBAC B, BRUTIN D. Thermocapillary instabilities in an evaporating drop deposited onto a heated substrate[J]. Phys. Fluids, 2012, 24(3):032103
    [5]
    CHEN Qisheng, HE Meng, HU Kaixin. Linear stability analysis of thermocapillary convection in annular pools[J]. Chin. J. Space Sci., 2016, 36(4):476-480(陈启生, 何蒙, 胡开鑫. 环形液池热毛细对流的线性稳定性分析[J]. 空间科学学报, 2016, 36(4):476-480)
    [6]
    SMITH M K, DAVIS S H. Instabilities of dynamic thermocapillary liquid layers:1 convective instabilities[J]. J. Fluid Mech., 1983, 132:119-144
    [7]
    SMITH M K, DAVIS S H. Instabilities of dynamic thermocapillary liquid layers:2 surface-wave instabilities[J]. J. Fluid Mech., 1983, 132:145-162
    [8]
    SMITH M K. Instability mechanisms in dynamic thermocapillary liquid layers[J]. Phys. Fluids, 1986, 29(10):3182-3186
    [9]
    VILLERS D, PLATTEN J K. Coupled buoyancy and Marangoni convection in acetone:experiments and comparison with numerical simulations[J]. J. Fluid Mech., 1991, 234:487-510
    [10]
    GILLON P, HOMSY G M. Combined thermocapillary-buoyancy convection in a cavity:an experimental study[J]. Phys. Fluids, 1996, 8(11):2953-2963
    [11]
    BRAUNSFURTH M G, HOMSY G M. Combined thermocapillary-buoyancy convection in a cavity. Part Ⅱ. An experimental study[J]. Phys. Fluids, 1997, 9(5):1277-1286
    [12]
    ZHU P, DUAN L, KANG Q. Transition to chaos in thermocapillary convection[J]. Int. J. Heat Mass Tran., 2013, 57(2):457-464
    [13]
    SHI Wanyuan, LI Yourong, PENG Lan, et al. Natural characteristics of hydrothermal wave in a shallow annular pool[J]. Chin. J. Comput. Mech., 2009, 26(1):59-65(石万元, 李友荣, 彭岚, 等. 环形浅液池内热流体波的本质特征[J]. 计算力学学报, 2009, 26(1):59-65)
    [14]
    LI Y R, IMAISHI N, AZAMI T, et al. Three-dimensional oscillatory flow in a thin annular pool of silicon melt[J]. J. Cryst. Growth, 2004, 260(1/2):28-42
    [15]
    LI Y R, PENG L, AKIYAMA Y, et al. Three-dimensional numerical simulation of thermocapillary flow of moderate Prandtl number fluid in annular pool[J]. J. Cryst. Growth, 2003, 259(4):374-387
    [16]
    ZHANG L, LI Y R Li, WU C M. Effect of surface heat dissipation on thermocapillary convection of low Prandtl number fluid in a shallow annular pool[J]. Int. J. Heat Mass Tran., 2017, 110:660-667
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(947) PDF Downloads(2537) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return