Volume 39 Issue 1
Jan.  2019
Turn off MathJax
Article Contents
QIAO Shuai, PAN Weilin, BAN Chao, CHEN Lei, YU Ting. Characterization of Mesospheric Inversion Layer with Rayleigh Lidar Data over Golmud[J]. Journal of Space Science, 2019, 39(1): 84-92. doi: 10.11728/cjss2019.01.084
Citation: QIAO Shuai, PAN Weilin, BAN Chao, CHEN Lei, YU Ting. Characterization of Mesospheric Inversion Layer with Rayleigh Lidar Data over Golmud[J]. Journal of Space Science, 2019, 39(1): 84-92. doi: 10.11728/cjss2019.01.084

Characterization of Mesospheric Inversion Layer with Rayleigh Lidar Data over Golmud

doi: 10.11728/cjss2019.01.084
  • Received Date: 2018-01-16
  • Rev Recd Date: 2018-08-06
  • Publish Date: 2019-01-15
  • Based on the measurements of MARMOT (Middle Atmosphere Remote Mobile Observatory in Tibet) lidar located in Golmud, Qinghai (36.25°N, 94.54°E) from July to December 2014, Mesospheric Inversion Layer (MIL) over Golmud area has been analyzed. The average occurrence frequency of MIL over Golmud is 53.8% during this period. The occurrence frequency is highest and can be up to 76% in winter (December), is around 60% in autumn equinox, and is as low as 29% in summer (July, August). The amplitude of temperature inversion is within 5~20K, and the average value is 15.9K. The mean bottom altitude of MIL is 75.1km. The bottom altitude is higher and mainly from 77 to 84km in autumn. It is lower in winter and summer, and mainly from 64 to 74km. The mean width of MIL is 8.7km, and it increases from summer to winter.


  • loading
  • [1]
    MERIWETHER J W, GERRARD A J. Mesosphere inversion layers and stratosphere temperature enhancements[J]. Rev. Geophys., 2004, 42(3):1-31
    SCHMIDLIN F J. Temperature inversions near 75km[J]. Geophys. Res. Lett., 1976, 3(3):173-176
    LÜBKEN F J, HILLERT W, LEHMACHER G, et al. Intercomparison of density and temperature profiles obtained by lidar, ionization gauges, falling spheres, datasondes and radiosondes during the DYANA campaign[J]. J. Atmos. Terr. Phys., 1994, 56(13-14):1969-1984
    LEBLANC T, HAUCHECORNE A. Recent observations of mesospheric temperature inversions[J]. J. Geophys. Res.:Atmos., 1997, 102(D16):19471-19482
    FADNAVIS S, BEIG G. Mesospheric temperature inversions over the Indian tropical region[J]. Ann. Geophys., 2004, 22(10):3375-3382
    CHEN Linxiang, YANG Guotao, WANG Jihong, et al. Measurements of lower mesosphere inversion layers with rayleigh lidar over Beijing[J]. Chin. J. Space Sci., 2017, 37(1):75-81(陈林祥, 杨国韬, 王继红, 等. 瑞利激光雷达探测北京上空中间层低逆温层[J]. 空间科学学报, 2017, 37(1):75-81)
    SHE C Y, YU J R, CHEN H. Observed thermal structure of a midlatitude mesopause[J]. Geophys. Res. Lett., 1993, 20(7):567-570
    STATES R J, GARDNER C S. Influence of the diurnal tide and thermospheric heat sources on the formation of mesospheric temperature inversion layers[J]. Geophys. Res. Lett., 1998, 25(9):1483-1486
    HUANG T Y, HICKEY M P, TUAN T F, et al. Further investigations of a mesospheric inversion layer observed in the ALOHA-93 Campaign[J]. J. Geophys. Res. Atmos., 2002, 107(D19):ACL 17-1-ACL 17-8
    YUAN T, PAUTET P D, ZHAO Y, et al. Coordinated investigation of midlatitude upper mesospheric temperature inversion layers and the associated gravity wave forcing by Na lidar and advanced mesospheric temperature mapper in Logan, Utah[J]. J. Geophys. Res.:Atmos., 2014, 119(7):3756-3769
    CLANCY R T, RUSCH D W, CALLAN M T, et al. Temperature minima in the average thermal structure of the middle mesosphere (70~80km) from analysis of 40-to 92-km SME global temperature profiles[J]. J. Geophys. Res.:Atmos., 1994, 99(D9):19001-19020
    GAN Q, ZHANG S D, YI F. TIMED/SABER observations of lower mesospheric inversion layers at low and middle latitudes[J]. J. Geophys. Res.:Atmos., 2012, 117(D7):1-14
    MERIWETHER J W, GARDNER C S. A review of the mesosphere inversion layer phenomenon[J]. J. Geophys. Res.:Atmos., 2000, 105(D10):12405-12416
    DUCK T J, SIPLER D P, SALAH J E, et al. Rayleigh lidar observations of a mesospheric inversion layer during night and day[J]. Geophys. Res. Lett., 2001, 28(18):3597-3600
    HAUCHECORNE A, MAILLARD A. A 2-d dynamical model of mesospheric temperature inversions in winter[J]. Geophys. Res. Lett., 1990, 17(12):2197-2200
    SASSI F, GARCIA R R, BOVILLE E, et al. On temperature inversions and the mesospheric surf zone[J].J. Geophys. Res.:Atmos., 2002, 107(D19):ACL 8-1-ACL 8-11
    SICA R J, ARGALL P S, SHEPHERD T G, et al. Model-measurement comparison of mesospheric temperature inversions, and a simple theory for their occurrence[J]. Geophys. Res. Lett., 2007, 34(23):231-247
    FADNAVIS S, SⅡNGH D, BEIG G, et al. Seasonal variation of the mesospheric inversion layer, thunderstorms, and mesospheric ozone over India[J]. J. Geophys. Res.:Atmos., 2007, 112(D15):1-12
    QIAO S, PAN W, ZHU K Y, et al. Initial results of lidar measured middle atmosphere temperatures over tibetan plateau[J]. Atmos. Oceanic Sci. Lett., 2014, 7(3):213-217
    YU Ting, PAN Weilin, ZHU Keyun, et al. Preliminary analysis of mesospheric summer temperature measurements in Golmud[J]. Infrared Laser Eng., 2016, 45(12):1211005-1-1211005-7(鱼艇, 潘蔚琳, 朱克云, 等. 夏季格尔木中间层大气温度探测初步分析[J]. 红外与激光工程, 2016, 45(12):1211005-1-1211005-7)
    MERTENS C J, MLYNCZAK M J, LÓPEZ-PUERTAS M, et al. Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15μm earth limb emission under non-LTE conditions[J]. Geophys. Res. Lett., 2001, 28(7):1391-1394
    PICONE J M, HEDIN A E, DROB D P, et al. NRLMSISE-00 empirical model of the atmosphere:Statistical comparisons and scientific issues[J]. J. Geophys. Res.:Space Phys., 2002, 107(A12):SIA 15-1-SIA 15-16
    QIAO S, PAN W L, LÜ D. Winter mesospheric thermal structure over tibetan plateau[C]//The 27th International Laser Radar Conference 2016. New York, USA, 2016
    HAUCHECORNE A, CHANIN M L, WILSON R. Mesospheric temperature inversion and gravity wave breaking[J]. Geophys. Res. Lett., 1987, 14(9):933-936
    WHITEWAY J A, CARSWELL A I, WARD W E. Mesospheric temperature inversions with overlying nearly adiabatic lapse rate:An Indication of a well-mixed turbulent layer[J]. Geophys. Res. Lett., 1995, 22(10):1201-1204
    GILLE S T, HAUCHECORNE A, CHANIN M L. Semidiurnal and diurnal tidal effects in the middle atmosphere as seen by Rayleigh lidar[J]. J. Geophys. Res.:Atmos., 1991, 96(D4):7579-7587
    STATES R J, GARDNER C S. Thermal structure of the mesopause region (80~105km) at 40°N latitude. Part Ⅱ:Diurnal Variations[J]. J. Atmos. Sci., 2000, 57(1):66-77
    RAMESH K, SRIDHARAN S. Large mesospheric inversion layer due to breaking of small-scale gravity waves:evidence from rayleigh lidar observations over Gadanki (13.5°N, 79.2°E)[J]. J. Atmos. Sol.-Terr. Phys., 2012, 89(89):90-97
    RAMESH K, SRIDHARAN S, RAGHUNATH K, et al. Planetary wave-gravity wave interactions during mesospheric inversion layer events[J]. J. Geophys. Res. Space Phys., 2013, 118(7):4503-4515
    GARDNER C S, YANG W M. Measurements of the dynamical cooling rate associated with the vertical transport of heat by dissipating gravity waves in the mesopause region at the Starfire Optical Range, New Mexico[J]. J. Geophys. Res. Atmos., 1998, 103(D14):16909-16926
    LIU H L, HAGAN M E. Local heating/cooling of the mesosphere due to gravity wave and tidal coupling[J]. Geophys. Res. Lett., 1998, 25(15):2941-2944
    LIU H L, HAGAN M E, ROBLE R G. Local mean state changes due to gravity wave breaking modulated by the diurnal tide[J]. J. Geophys. Res.:Atmos., 2000, 105(D10):12381-12396
    BROWN L B, GERRARD A J, MERIWETHER J W, et al. All-sky imaging observations of mesospheric fronts in OI 557.7nm and broadband OH airglow emissions:Analysis of frontal structure, atmospheric background conditions, and potential sourcing mechanisms[J]. J. Geophys. Res.:Atmos., 2004, 109(D19):1-19
    MLYNCZAK M G, MORGAN F, YEE J H, et al. Simultaneous measurements of the O2(^1Δ) and O2() Airglows and ozone in the daytime mesosphere[J]. Geophys. Res. Lett., 2001, 28(6):999-1002
    XU Xiaohua, GUO Jincheng, LUO Jia. Analysis of the active characteristics of stratosphere gravity waves over the Qinghai-Tibetan Plateau using COSMIC radio occultation data[J]. Chin. J. Geophys., 2016, 59(4):1199-1210(徐晓华, 郭金城, 罗佳. 利用COSMIC RO数据分析青藏高原平流层重力波活动特征[J]. 地球物理学报, 2016, 59(4):1199-1210)
    LI Q Z, XU J Y, YUAN W, et al. Characteristics of mesospheric gravity waves over the southeastern Tibetan Plateau region[J]. J. Geophys. Res.:Space Phys., 2016, 121(9):9204-9221
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(482) PDF Downloads(333) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint