Volume 39 Issue 4
Jul.  2019
Turn off MathJax
Article Contents
YI Tianhao, CHEN Chaoyue, LEI Zuosheng, ZHAO Jianfu. Numerical Simulation of Bubble Dynamics and Heat Transfer during Pool Boiling in Microgravity[J]. Journal of Space Science, 2019, 39(4): 469-477. doi: 10.11728/cjss2019.04.469
Citation: YI Tianhao, CHEN Chaoyue, LEI Zuosheng, ZHAO Jianfu. Numerical Simulation of Bubble Dynamics and Heat Transfer during Pool Boiling in Microgravity[J]. Journal of Space Science, 2019, 39(4): 469-477. doi: 10.11728/cjss2019.04.469

Numerical Simulation of Bubble Dynamics and Heat Transfer during Pool Boiling in Microgravity

doi: 10.11728/cjss2019.04.469
  • Received Date: 2019-05-06
  • Publish Date: 2019-07-15
  • A two-dimensional model of the single bubble is performed. The surface tension and Marangoni force are included in the momentum equation. In addition, the continuity equation and energy equation are modified to allow for the phase change. A thin superheated layer is considered in the numerical model. The vapor-liquid interface is captured by the phase field method. The variations of bubble dynamics and heat transfer during subcooling pool boiling in microgravity can be obtained by solving the coupled equations. The results show that the bubble changes from a hemisphere to an ellipsoid and eventually becomes a pear shape. The bubble can randomly move on the surface. Besides, the bubble exhibits non-axisymmetrical shape during growth period. Due to the effect of fluid flow, the temperature field above the bubble appears to be a mushroom shape. The bubble departure diameter and departure time are proportional to g-0.488 and g-1.113 respectively. The average heat flux on the heater surface is proportional to g0.229.

     

  • loading
  • [1]
    OSE Y, KUNUGI T. Numerical study on subcooled pool boiling[C]//ASME/JSME 20118th Thermal Engineering Joint Conference. Honolulu, HaWaii:American Society of Mechanical Engineers, 2011:T10193-T10193-7
    [2]
    YEH L. Review of heat transfer technologies in electronic equipment[J]. J. Electron. Packag., 1995, 117(4):333-339
    [3]
    LI Zhendong, ZHAO Jianfu, LU Yanghui, et al. Origin of thermocapillary convection in pool boiling[J]. Chin. J. Space Sci., 2008, 28(1):38-43(李震东, 赵建福, 鲁仰辉, 等. 池沸腾现象中热毛细对流的成因[J]. 空间科学学报, 2008, 28(1):38-43)
    [4]
    ZHANG Y, WEI J, XUE Y, et al. Bubble dynamics in nucleate pool boiling on micro-pin-finned surfaces in microgravity[J]. Appl. Therm. Eng., 2014, 70(1):172-182
    [5]
    RAJ R, KIM J, MCQUILLEN J. Subcooled pool boiling in variable gravity environments[J]. J. Heat Trans., 2009, 131(9):091502-1-10
    [6]
    OHTA H, KAWAJI M, AZUMA H, et al. TR-1A rocket experiment on nucleate pool boiling heat transfer under microgravity[J]. Asme-Public. Htd., 1997, 354:249-256
    [7]
    LIU Peng, WU Ke, DU Wangfang, et al. Experimental study on bubble behaviors in microgravity pool boiling[J]. Chin. J. Space Sci., 2018, 38(2):221-226(刘鹏, 吴克, 杜王芳, 等. 微重力池沸腾中的气泡行为实验研究[J]. 空间科学学报, 2018, 38(2):221-226)
    [8]
    MERTE H. Some parameter boundaries governing microgravity pool boiling modes[J]. Ann. New York Acad. Sci., 2006, 1077(1):629-649
    [9]
    DHIR V K, WARRIER G R, AKTINOL E, et al. Nucleate pool boiling experiments (NPBX) on the international space station[J]. Microg. Sci. Tech., 2012, 24(5):307-325
    [10]
    SON G, DHIR V K, RAMANUJAPU N. Dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface[J]. J. Heat Trans., 1999, 121(3):623-631
    [11]
    SINGH S, DHIR V K. Effect of gravity, wall superheat and liquid subcooling on bubble dynamics during nucleate boiling[C]//Microgravity Fluid Physics and Heat Transfer. New York:Begell House, 2000:106-113
    [12]
    YI T H, LEI Z S, ZHAO J F. Numerical investigation of bubble dynamics and heat transfer in subcooling pool boiling under low gravity[J]. Int. J. Heat Mass Trans., 2019, 132:1176-1186
    [13]
    JACQMIN D. Calculation of two-phase NavierStokes flows using phase-field modeling[J]. J. Comput. Phys., 1999, 155(1):96-127
    [14]
    GAO Shiqiao. Capillary Mechanics[M]. Beijing:Science Press, 2010(高世桥. 毛细力学[M]. 北京:科学出版社, 2010)
    [15]
    ZENG Pan. Basic Course of Finite Element[M]. Beijing:Higher Education Press, 2009(曾攀. 有限元基础教程[M]. 北京:高等教育出版社, 2009)
    [16]
    LIU Junjie, WANG Guoqing, ZHANG Lijun, et al. Preliminary study on numerical simulation of single bubble boiling[J]. Petrochem. Tech., 2015, 44(11):1295-1301(刘俊杰, 王国清, 张利军, 等. 单汽泡沸腾过程数值模拟的研究[J]. 石油化工, 2015, 44(11):1295-1301)
    [17]
    QIU D M, DHIR V K, CHAO D, et al. Single-bubble dynamics during pool boiling under low gravity conditions[J]. J. Thermophy. Heat Trans., 2002, 16(3):336-345
    [18]
    FENG Y, LI H X, GUO K K, et al. Numerical study of single bubble growth on and departure from a horizontal superheated wall by three-dimensional lattice boltzmann method[J]. Microg. Sci. Tech., 2018, 30(6):761-773
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(581) PDF Downloads(136) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return