Volume 41 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
LIU Hong, ZHANG Xiaofeng, FENG Jianchao, ZHU Cheng, CAI Zhiming, XU Yu. Application of Precision Thermal Control Techniques in Taiji-1 satelliteormalsize[J]. Chinese Journal of Space Science, 2021, 41(2): 337-341. doi: 10.11728/cjss2021.02.337
Citation: LIU Hong, ZHANG Xiaofeng, FENG Jianchao, ZHU Cheng, CAI Zhiming, XU Yu. Application of Precision Thermal Control Techniques in Taiji-1 satelliteormalsize[J]. Chinese Journal of Space Science, 2021, 41(2): 337-341. doi: 10.11728/cjss2021.02.337

Application of Precision Thermal Control Techniques in Taiji-1 satelliteormalsize

doi: 10.11728/cjss2021.02.337
  • Received Date: 2019-11-12
  • Rev Recd Date: 2020-03-03
  • Publish Date: 2021-03-15
  • In order to detect gravitational waves in space, the Chinese Academy of Sciences has drawn up the Taiji plan. The first step of the Taiji plan is to verify the key techniques of the core payload through the Taiji-1 satellite in low Earth orbit. Because the temperature stability directly affects the measurement accuracy of the interferometer ranging and acceleration, the temperature control index of (T±0.1) K with high precision and high stability is proposed for the Taiji-1 satellite. Based on this requirement, an efficient thermal control scheme was designed. In the scheme, the thermal control from the selection of thermal components to the application of stand-alone equipment was controlled according to high indicators. At the same time, in the process of thermal implementation, in order to ensure the efficiency of the scheme, detailed control was also carried out. The thermal control scheme adopts the “constant temperature cage” as the design concept, adopts the means of three-stage temperature control, and combines the principle of active and passive. Finally, the high stability index of on-orbit flight temperature control of (T±0.005) K is obtained. Through the application research of high precision and high stability technology, it is found that thermal control heating scheme, heat leakage control, single resolution of temperature controller, temperature measuring circuit, control algorithm, control precision, temperature measuring resolution of temperature measuring element are still the important factors that restrict high precision temperature control technology.

     

  • loading
  • [1]
    HOU Zengqi, HU Jingang. Spacecraft Thermal control technology——Principle and application[M]. Beijing:China Science and Technology Press, 2007:273
    [2]
    CHEN Rongli, GENG Liyin, MA Zhen, et al. Thermal analysis and thermal design of space camera[J]. Acta Photon. Sin., 2006, 35(1):155
    [3]
    TONG Yelong. Research Status of spacecraft precision temperature control technology[J]. Space Return Remote Sens., 2016, 37(2):46-53
    [4]
    ZHANG Xiaojie, YU Fan, ZHAO Baoqi, et al. Design of high precision laser temperature control system[J]. Electro Optics Control, 2010, 17(9):82-85
    [5]
    GU Yanping. Research and experimental verification of precision temperature control technology for GEO high precision star sensor[J]. Shanghai Aerosp., 2016, 33(6):91-98
    [6]
    LI Guoqiang, GENG Liyin, TONG Yelong, et al. A precision temperature control system for spacecraft rubidium clock[J]. Spacecraft Eng., 2011, 20(4):93-98
    [7]
    HUANG Yunke, LI Qiang, HU Mengchun, et al. Combined thermal design and temperature control technology of fiber optic strapdown inertial measurement[J]. Shanghai Aerosp., 2016, 33:122-126
    [8]
    CHEN Jianping, LIU Runhua. Design of temperature control circuit for semiconductor laser[J]. J. Gannan Normal Univ., 2010, 6(3):74-76
    [9]
    YANG Juan, LI Yunze. Application of parameter self-tuning fuzzy PI control in nanosatellite thermal control system[J]. it Chin. J. Space Sci., 2009, 29(4):438-442 (杨娟, 李运泽. 参数自整定模糊PI控 制在纳卫星热控系统中的应用[J]. 空间科学学报, 2009, 29(4):438-442)
    [10]
    YANG Juan, LI Yunze, WANG Jun. Simulation of nano-satellite thermal control system based on fuzzy control[J]. J. Beijing Univ. Aeronaut. Astronaut., 2008, 34(4):470-473 (杨娟, 李运泽, 王浚. 基于模糊控制的纳卫星热控系统仿真[J]. 北京航空航天大学学报, 2008, 34(4):470-473)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(551) PDF Downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return