Volume 33 Issue 1
Jan.  2013
Turn off MathJax
Article Contents
Yu Yonghui, Chen Wei, Wang Yachong. Directional filtering due to mesospheric wind shear on the propagation of acoustic-gravity waves[J]. Journal of Space Science, 2013, 33(1): 53-62. doi: 10.11728/cjss2013.01.053
Citation: Yu Yonghui, Chen Wei, Wang Yachong. Directional filtering due to mesospheric wind shear on the propagation of acoustic-gravity waves[J]. Journal of Space Science, 2013, 33(1): 53-62. doi: 10.11728/cjss2013.01.053

Directional filtering due to mesospheric wind shear on the propagation of acoustic-gravity waves

doi: 10.11728/cjss2013.01.053
  • Received Date: 2011-11-03
  • Rev Recd Date: 2012-10-18
  • Publish Date: 2013-01-15
  • Gravity waves with periods close to the Brunt-Väisälä period of the upper troposphere are often observed at mesopause altitudes as short period, quasi-monochromatic waves. The assumption that these short period waves originate in the troposphere may be problematic because their upward propagation to the mesosphere and lower thermosphere region could be significantly impeded due to an extended region of strong evanescence above the stratopause. To reconcile this apparent paradox, an alternative explanation is proposed in this paper. The inclusion of mean winds and their vertical shears is sufficient to allow certain short period waves to remain internal above the stratopause and to propagate efficiently to higher altitudes. A time-dependent numerical model is used to demonstrate the feasibility of this and to determine the circumstances under which the mesospheric wind shears play a role in the removal and directional filtering of short period gravity waves. Finally this paper concludes that the combination of the height-dependent mean winds and the mean temperature structure probably explains the existence of short period, quasi-monochromatic structures observed in airglow images of mesopause region.


  • loading
  • [1]
    Hines C O. Internal atmospheric gravity waves at ionospheric heights[J]. Can. J. Phys., 1960, 38:1441-1481
    Fritts D C, Alexander M J. Gravity wave dynamics and effects in the middle atmosphere[J]. Rev. Geophys.,2003,41(1):1003, doi: 10.1029/2001RG000106
    Walterscheid R L, Schubert G, Brinkman D G. Small-scale gravity waves in the upper mesosphere and lower thermosphere generated by deep tropical convection[J]. J. Geophys. Res., 2001, 106(D23):31825-31832
    Snively J B, Pasko V P. Breaking of thunderstorm-generated gravity waves as a source of short-period ducted waves at mesopause altitudes[J]. Geophys. Res. Lett., 2003, 30(24):2254-2258
    Yu Y, Hickey M P. Time-resolved ducting of atmospheric acoustic-gravity waves by analysis of the vertical energy flux[J]. Geophys. Res. Lett., 2007, 34:L02821
    Yu Y, Hickey M P. Simulated ducting of high-frequency atmospheric gravity waves in the presence of background winds[J]. Geophys. Res. Lett., 2007, 34:L11103
    Pierce A D, Coroniti S C. A mechanism for the generation of acoustic-gravity waves during thunderstorm formation[J]. Nature, 1966, 210(5042):1209-1210
    Yu Y, Hickey M P. Numerical modeling of a gravity wave packet ducted by the thermal structure of the atmosphere[J]. J. Geophys. Res., 2007, 112:A06308,doi: 10.1029/2006JA012092
    Manzini E, Hamilton K. Middle atmospheric traveling waves forced by latent and convective heating[J]. J. Atmos. Sci., 1993, 50:2180-2200
    Walterscheid R L, Hecht J H, Vincent R A, Reid I M, Woithe J, Hickey M P. Analysis and interpretation of airglow and radar observations of quasi-monochromatic gravity waves in the upper mesosphere and lower thermosphere over Adelaide, Australia[J]. J. Atmos. Sol. Terr. Phys., 1999, 61:461-478
    Hecht J H, Walterscheid R L, Hickey M P, Franke S J. Climatology and modeling of quasi-monochromatic atmospheric gravity waves observed over Urbana Illinois[J]. J. Geophys. Res., 2001, 106(D6):5181-5196
    Yamada Y, Fukunishi H, Nakamura T, Tsuda T. Breaking of small-scale gravity waves and transition to turbulence observed in OH airglow[J]. Geophys. Res. Lett., 2001,28(11):2153-2156
    Hines C O, Reddy C A. On the propagation of atmospheric gravity waves through regions of wind shear[J]. J. Geophys. Res., 1967, 72:1015-1034
    Yu Y, Hickey M P, Liu Y. A numerical model characterizing internal gravity wave propagation into the upper atmosphere[J]. Adv. Space Res., 2009, 44(7):836-846
    Hickey M P, Cole K D. A quartic dispersion equation for internal gravity waves in the thermosphere[J]. J. Atmos. Sol. Terr. Phys., 1987, 49(9):889-899
    Walterscheid R L, Hickey M P. One-gas models with height-dependent mean molecular weight: Effects on gravity wave propagation[J]. J. Geophys. Res., 2001,106(A12):28831-28840
    Strobel D F. Constraints on gravity wave induced diffusion in the middle atmosphere[J]. Pure Appl. Geophys., 1989, 130:533-546
    Hocking W K. Turbulence in the region 80--120km[J]. Adv. Space Res., 1987, 7(10):171-181
    Rees M H. Physics and Chemistry of the Upper Atmosphere[M]. Cambridge: Cambridge University Press, 1989
    Walterscheid R L, Schubert G. Nonlinear evolution of an upward propagating gravity wave: Overturning, convection, transience and turbulence[J]. J. Atmos. Sci.,1990, 47(1):101-125
    Yu Y, Liu Y. Cylindrical gravity waves generated by thunderstorm driven sources at tropospheric altitudes[J]. Chin. J. Space Sci., 2011, 31(4):467-473
    Einaudi F, Hines C O. WKB approximation in application to acoustic-gravity waves[J]. Can. J. Phys., 1971, 48:1458-1471
    Hedin A E. Extension of the MSIS thermosphere model into the middle and lower atmosphere[J]. J. Geophys. Res.,1991, 96:1159-1172
    Hedin A E, Fleming E L, Manson A H, et al. Empirical wind model for the upper, middleand lower atmosphere[J]. J. Atmos. Terr. Phys., 1996,58:1421-1447
    Eliassen A, Palm E. On the transfer of energy in stationary mountain waves[J]. Geofysiske Publ., 1961, 22:1-23
    Francis S H. Acoustic-gravity modes and large-scale traveling ionospheric disturbances of a realistic, dissipative atmosphere[J]. J. Geophys. Res., 1973, 78:2278-2301
    Del Genio A D, Schubert G., Straus J M. Characteristics of acoustic-gravity waves in a diffusively separated atmosphere[J]. J. Geophys. Res., 1979, 84:1865-1879
    Forbes J M, Zhang X, Ward W, Talaat E R. Climatological features of mesosphere and lower thermosphere stationary planetary waves within ±40° latitude[J]. J. Geophys. Res., 2002, 107(D17):4322, doi: 10.1029/2001JD001232
    Taylor M J, Ryan E H, Tuan T F, Edwards R. Evidence of preferential directions for gravity wave propagation due to wind filtering in the middle atmosphere[J]. J. Geophys. Res., 1993, 98(A4):6047-6057
    Fritts D C, Vadas S L. Gravity wave penetration into the thermosphere: Sensitivity to solar cycle variations and mean winds[J]. Ann. Geophys., 2008, 26:3841-3861
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1998) PDF Downloads(1302) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint