Volume 33 Issue 1
Jan.  2013
Turn off MathJax
Article Contents
Li Xiaoyu, Zheng Jianhua. Global optimization of gravity-assist trajectory with deep space maneuvers[J]. Journal of Space Science, 2013, 33(1): 72-78. doi: 10.11728/cjss2013.01.072
Citation: Li Xiaoyu, Zheng Jianhua. Global optimization of gravity-assist trajectory with deep space maneuvers[J]. Journal of Space Science, 2013, 33(1): 72-78. doi: 10.11728/cjss2013.01.072

Global optimization of gravity-assist trajectory with deep space maneuvers

doi: 10.11728/cjss2013.01.072
  • Received Date: 2011-10-27
  • Rev Recd Date: 2012-11-16
  • Publish Date: 2013-01-15
  • The problem of optimal design of a multi-gravity-assist space trajectory with deep space maneuvers is studied. Based on the zero-sphere-of-influence and patched conic hypothesis, the deep space trajectory is split into segments linked by deep space maneuvers and gravity assists. After introducing an auxiliary angle and B plane, the outgoing excess velocity could be expressed analytically. The deep space maneuver was computed by solving Lambert problem and trajectory propagation. The differential evolution algorithm is used to handle afore mentioned global optimization problem. Three cases to Jupiter, with gravity sequences of Venus-Earth-Earth (VEE), Venus-Earth-Mars-Earth (VEME) and Venus-Earth-Venus-Earth (VEVE) have been optimized.

     

  • loading
  • [1]
    Soldner J K, Stancati M L, Feingold H, et al. Galilean satellite mission concepts[C]//Astrodynamics Conference. San Diego: American Institute of Aeronautics and Astronautics, 1982
    [2]
    Balogh A, Gonzalez-Esparza J, Forsyth R, et al. Interplanetary shock waves: Ulysses observations in and out of the ecliptic plane[J]. Space Sci. Rev., 1995, 72(1):171-180
    [3]
    Wenzel K, Marsden R, Page D, et al. The Ulysses mission[J]. Astron. Astrophys., 1992, 92(2):207-219
    [4]
    Jaffe L, Herrell L. Cassini/Huygens science instruments, spacecraft, and mission[J]. J. Spacecr. Rocket., 1997, 34(4): 509-521
    [5]
    Matson D, Spilker L, Lebreton J. The Cassini/Huygens mission to the Saturnian system[J]. Space Sci. Rev., 2002, 104(1):51-58
    [6]
    Broucke R. The celestial mechanics of gravity assist, 1988[C]//AIAA/AAS Astrodynamics Conference. Minneapolis: American Institute of Aeronautics and Astronautics, 1988. 69-78
    [7]
    Breakwell J V, Lawrence M P. Matched asymptotic expansions, patched conics and the computation of interplanetary trajectories[R]. AIAA65-689,1965
    [8]
    Casalino L, Colasurdo G, Pastrone D. Simple strategy for powered swing-by[J]. J. Guid. Contr. Dyn., 1999, 22(1):156-159
    [9]
    Prado A, Broucke R. Effects of atmospheric drag in swing-by trajectory[J]. Acta Astron., 1995, 36(6):285-290
    [10]
    Bonfiglio E, Longuski J. Automated design of aerogravity-assist trajectories[J]. J. Spacecr., 2000, 36(6):768-775
    [11]
    Qiao Dong. Study of transfer trajectory design method for deep space exploration and application to small body exploration[D]. Harbin: Harbin Institute of Technology, 2006. In Chinese (乔栋. 星际探测中的小推力转移轨道设计与优化方法 研究[D]. 哈尔滨: 哈尔滨工业大学, 2007)
    [12]
    Conway B A. Spacecraft Trajectory Optimization[M]. Cambridge: Cambridge University Press, 2009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(2113) PDF Downloads(1355) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return