Volume 34 Issue 1
Jan.  2014
Turn off MathJax
Article Contents
Xie Yanqiong, Zhang Ying, Du Dan. Predicting whether an interplanetary shock will encounter the Earth by using solar and interplanetary parameters[J]. Journal of Space Science, 2014, 34(1): 11-23. doi: 10.11728/cjss2014.01.011
Citation: Xie Yanqiong, Zhang Ying, Du Dan. Predicting whether an interplanetary shock will encounter the Earth by using solar and interplanetary parameters[J]. Journal of Space Science, 2014, 34(1): 11-23. doi: 10.11728/cjss2014.01.011

Predicting whether an interplanetary shock will encounter the Earth by using solar and interplanetary parameters

doi: 10.11728/cjss2014.01.011
  • Received Date: 2012-12-11
  • Rev Recd Date: 2013-06-28
  • Publish Date: 2014-01-15
  • Predicting whether an Interplanetary (IP) shock driven by solar eruptions will encounter the Earth is the prerequisite and foundation to predict its arrival time at the Earth and the geoeffectiveness. Using 542 IP shock events associated with solar eruptions during 1997—2006, the influence of intensity, location, initial shock speed, duration of solar eruptions and Solar Energetic Particles (SEP) flux upon the propagation of IP shocks is investigated statistically, and then key physical parameters mentioned above that obviously influence the IP shock's arrival at the Earth are chosen. Finally, an Earth-directed and Earth-away Shock Prediction Model (EdEaSPM) based on not only solar parameters but also SEP parameters is built. The results of historical prediction show that the success rate of EdEaSPM model is about 66%, which is significantly higher than that of the other prevailing models, STOA, ISPM and HAFv2. The False Alarm Ratio (FAR) of EdEaSPM is less than 50% and the situation that FAR is too high is improved. For the ratio of number of events with shock forecast to that with shock detection, bias, although the value of Bias of all of the models is greater than 1, the Bias of EdEaSPM is the smallest and most close to 1. For the other forecast skill scores, TSS, HSS and GSS, the EdEaSPM performs better than HAFv2 model. In addition, prediction test of 6 IP shock events between Jan. and Oct. 2012 shows that the forecast results are consistent with observations. The EdEaSPM model can forecast whether an IP shock will encounter the Earth about 1 to 3 days in advance, and its accuracy is comparable to that of the other prevailing models. In particular, the success rate and false alarm ratio are improved significantly.

     

  • loading
  • [1]
    Feng Xueshang, Xiang Changqing, Zhong Dingkun. The state-of-art of three-dimensional numerical study for corona-interplanetary process of solar storms[J]. Sci. China: D, 2011, 41(1):1-28. In Chinese (冯学尚, 向长青, 钟鼎坤. 太阳风暴的日冕行星际过程三维数值研究进展[J]. 中国科学: D, 2011, 41(1):1-28)
    [2]
    Fry C D, Dryer M, Smith Z, et al. Forecasting solar wind structures and shock arrival times using an ensemble of models[J]. J. Geophys. Res., 2003, 108(A2):1070, doi: 10.1029/2002JA009474
    [3]
    McKenna-Lawlor S M P, Dryer M, Kartalev M D, et al. Near realtime predictions of the arrival at Earth of flare-related shocks during Solar Cycle 23[J]. J. Geophys. Res., 2006, 111, A11103, doi: 10.1029/2005JA011162
    [4]
    Smith Z K, Dryer M, McKenna-Lawlor S M P, et al. Operational validation of HAFv2's predictions of interplanetary shock arrivals at Earth: Declining phase of Solar Cycle 23[J]. J. Geophys. Res., 2009, 114, A05106, doi: 10.1029/2008JA013836
    [5]
    Zhao X H, Feng X S, Wu C C. Characteristics of solar flares associated with interplanetary shock or nonshock events at Earth[J]. J. Geophys. Res., 2006, 111, A09103, doi: 10.1029/2006JA011784
    [6]
    Zhao X H, Feng X S, Wu C C. Influence of solar flare's location and heliospheric current sheet on the associated shock's arrival at Earth[J]. J. Geophys. Res., 2007, 112, A06107, doi: 10.1029/2006JA012205
    [7]
    Yermolaev Y I, Yermolaev M Y, Zastenker G N, et al. Statistical studies of geomagnetic storm dependencies on solar and interplanetary events: a review[J]. Planet. Space Sci., 2005, 53:189-196
    [8]
    Cane H V, Richardson I G, Cyr O C St. Coronal mass ejections, interplanetary ejecta and geomagnetic storms[J]. Geophys. Res. Lett., 2000, 27(21):3591-3594
    [9]
    Wang Y M, Ye P Z, Wang S, et al. A statistical study on the geoeffectiveness of Earth-directed coronal mass ejections from March 1997 to December 2000[J]. J. Geophys. Res., 2002, 107(A11): 1340, doi: 10.1029/2002JA009244
    [10]
    Srivastava N, Venkatakrishnan P. Solar and interplanetary sources of major geomagnetic storms during 1996—2002[J]. J. Geophys. Res., 2004, 109, A10103, doi: 10.1029/2003JA010175
    [11]
    Gopalswamy N, Yashiro S, Akiyama S. Geoeffectiveness of halo coronal mass ejections[J]. J. Geophys. Res., 2007, 112, A06112, doi: 10.1029/2006JA012149
    [12]
    Moon Y J, Cho K S, Dryer M, et al. New geoeffective parameters of very fast halo coronal mass ejections[J]. Astrophys. J., 2005, 624:414-419
    [13]
    Kang S M, Moon Y J, Cho K S, et al. Coronal mass ejection geoeffectiveness depending on field orientation and interplanetary coronal mass ejection classification[J]. J. Geophys. Res., 2006, 111, A05102, doi: 10.1029/2005JA011445
    [14]
    Shen C L, Wang Y M, Gui B, et al. Kinematic Evolution of A Slow CME in Corona Viewed by STEREO-B on October 8, 2007[J]. Solar Phys., 2011, 269:389-400
    [15]
    Song H, Yurchyshyn V, Yang G, et al. The automatic predictability of super geomagnetic storms from Halo CMEs associated with large solar flares[J]. Solar Phys., 2006, 238:141-165
    [16]
    Hu Y Q, Jia X Z. Interplanetary shock interaction with the heliospheric current sheet and its associated structures[J]. J. Geophys. Res., 2001, 106:29299-29304
    [17]
    Wei F S, Dryer M. Propagation of solar flare-associated interplanetary shock waves in the heliospheric meridional plane[J]. Solar Phys., 1991, 132:373-394
    [18]
    Xie Y Q, Wei F S, Xiang C Q, et al. The effect of heliospheric current sheet on interplanetary shocks[J]. Solar Phys., 2006, 238(2):377-390
    [19]
    Gopalswamy N, Makela P, Xie H, et al. CME interactions with coronal holes and their interplanetary consequences[J]. J. Geophys. Res., 2009, 114, A00A22, doi: 10.1029/2008JA013686
    [20]
    Gopalswamy N, Xie H, Makela P, et al. Interplanetary shocks lacking type Ⅱ radio bursts[J]. Astrophys. J., 2010, 710:1111-1126
    [21]
    Xie H, Gopalswamy N, Cyr O C St. Near-Sun flux rope structure of CMEs[J]. Solar Phys., 2013, 284(1):47-58
    [22]
    Mohamed A A, Gopalswamy N, Yashiro S, et al. The relation between coronal holes and coronal mass ejections during the rise, maximum, and declining phases of Solar Cycle 23[J]. J. Geophys. Res., 2012, 117, 1103, doi: 10.1029/2011JA016589
    [23]
    Smart D F, Shea M A. A simplified model for timing the arrival of solar flare-initiated shocks[J]. J. Geophys. Res., 1985, 90(A1):183-190
    [24]
    Smith Z K, Dryer M. The interplanetary shock propagation model: A model for predicting solar-flare-caused geomagnetic sudden impulses based on the 2-1/2D MHD numerical simulation results from the interplanetary global model[R]. NOAA-TM-ERL-SEL-89, 1995
    [25]
    Fry C D, Sun W, Deehr C S, et al. Improvements to the HAF solar wind model for space weather predictions[J]. J. Geophys. Res., 2001, 106:20985-21002
    [26]
    Feng X S, Zhang Y, Yang L P, et al. An operational method for shock arrival time prediction by one-dimensional CESE-HD solar wind model[J]. J. Geophys. Res., 2009, 114, A10103, doi: 10.1029/2009JA014385
    [27]
    Feng X S, Zhang Y, Sun W, et al. A practical database method for predicting arrivals of average interplanetary shocks at Earth[J]. J. Geophys. Res., 2009, 114, A01101, doi: 10.1029/2008JA013499
    [28]
    Qin G, Zhang M, Rassoul H K. Prediction of the shock arrival time with SEP observations[J]. J. Geophys. Res., 2009, 114, A09104, doi: 10.1029/2009JA014332
    [29]
    Zhang J, Dere K P, Howard R A, et al. Identification of solar sources of major geomagnetic storms between 1996 and 2000[J]. Astrophys. J., 2003, 582:520-533
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1018) PDF Downloads(2363) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return