Volume 34 Issue 3
May  2014
Turn off MathJax
Article Contents
JING Hao, LÜ Jianyong, JIANG Yong, WANG Ming, HU Huiping, LIU Ziqian. Electromagnetic Energy Transfer across the Magnetopause[J]. Journal of Space Science, 2014, 34(3): 269-277. doi: 10.11728/cjss2014.03.269
Citation: JING Hao, LÜ Jianyong, JIANG Yong, WANG Ming, HU Huiping, LIU Ziqian. Electromagnetic Energy Transfer across the Magnetopause[J]. Journal of Space Science, 2014, 34(3): 269-277. doi: 10.11728/cjss2014.03.269

Electromagnetic Energy Transfer across the Magnetopause

doi: 10.11728/cjss2014.03.269
  • Received Date: 2013-05-13
  • Rev Recd Date: 2013-10-10
  • Publish Date: 2014-05-15
  • A three-dimensional adaptive magnetohydrodynamic (MHD) model is used to examine the electromagnetic energy flow from the solar wind to the magnetosphere. The magnetopause is determined by finding approximately the inner edge of the void encompassed by the solar wind stream lines, and the magnetopause is divided into nightside and dayside part by polar cusp region. This study found that the magnetopause energy transfer has close relations with solar wind conditions. The magnetopause area also effects energy transfer. For northward IMF, most of the electromagnetic energy flux inflow occurs near the polar cusps on magnetopause; for southward IMF the largest electromagnetic energy input into the magnetosphere occurs at the tail lobe behind the cusps. Under southward IMF conditions, more electromagnetic energy input can be identified as increasing solar wind density while it does not enhance as much for northward IMF. Our results suggest that the mechanisms proposed to electromagnetic energy transfer are mainly due to reconnection. If the electromagnetic energy coupling between the solar wind and the magnetosphere can be interpreted as a proxy for the reconnection efficiency, the efficiency during northward IMF is about 10%~30% of that for southward IMF under the solar wind conditions we considered.

     

  • loading
  • [1]
    Xu Wenyao. Energy budget in the coupling processes of the solar wind, magnetosphere and ionosphere[J]. Chin. J. Space Sci., 2011, 31(1):1-14. In Chinese (徐文耀. 太阳风-磁 层-电离层耦合过程中的能量收支[J]. 空间科学学报, 2011, 31(1):1-14)
    [2]
    Dungey J W. Interplanetary magnetic field and the auroral zones[J]. Phys. Rev. Lett., 1961, 6, 47-48
    [3]
    Dungey J W. The structure of the exosphere, or adventures in velocity space[M]//Geophysics,the Earth's Environment. New York:Gordon and Breach, 1963:505
    [4]
    Lyon J G. The solar wind-magnetosphere-ionosphere system[J]. Science, 2000, 288:1987-1991
    [5]
    Shepherd S G, Greenwald R A, Ruohoniemi J M. Cross polar cap potentials measured with Super Dual Auroral Radar Network during quasi-steady solar wind and interplanetary magnetic field conditions[J]. J. Geophys. Res., 2002, 107:1094-1104
    [6]
    Guo J L, Shen C, Liu Z X. Simulation and comparison of particles entering the plasma sheet under northward and southward IMF conditions[J]. Chin. Sci. Bull., 2012, 57(34):3295-3300. In Chinese (郭九苓, 沈超, 刘振兴. IMF 北向 与南向时地球磁尾等离子片粒子注入机制[J]. 科学通报, 2012, 57(34):3295-3300)
    [7]
    Shen Chao, Liu Zhenxing. Northward turnings of the IMF trigger substorm onsets[J]. Chin. Sci.: A, 2000, 1:69-72. In Chinese (沈超, 刘振兴. 行星际磁场南转北向对亚暴 的触发效应[J]. 中国科学: A辑, 2000, 1:69-72)
    [8]
    Akasofu S I. Energy coupling between the solar wind and the magnetosphere[J]. Space Sci. Rev., 1981, 28:121-190
    [9]
    Petrukovich A A, Kallio E I, Pulkkinen T I, Koskinen H E J. Solar wind energy input and magnetospheric substorm activity compared[R]. Proceedings of 5th International Conference on Substorm, 2000:63-70
    [10]
    Ostgaard N, Tanskanen E I. Energetics of isolated and stormtime substorms[J]. Disturb. Geos.: Storm Subst. Relat., 2004, 274:169-184
    [11]
    Wang Chi. MHD Simulations on the Interaction of the solar wind with the magnetosphere[J]. Chin. J. Space Sci., 2011, 31(4):413-428. In Chinese (王赤. 太阳风-磁层相互作用的磁流体力学数值模拟研究[J]. 空间科学学报, 2011, 31(4):413-428)
    [12]
    Lopez R E, Wiltberger M, Hernandez S, Lyon J G. Solar wind density control of energy transfer to the magnetosphere[J]. Geophys. Res. Lett., 2004, 31(8):L08804
    [13]
    Palmroth M, Pulkkinen T I, Janhunen P, Wu C C. Stormtime energy transfer in global MHD simulation[J]. J. Geophys. Res., 2003, 108(A1):SMP24
    [14]
    Palmroth M, Laitinen T, Pulkkinen T. Magnetopause energy and mass transfer: Results from a global MHD simulation[J]. Ann. Geophys., 2006, 24:3467-3480
    [15]
    Rosenqvist L, Buchert S, Opgenoorth H, et al. Magnetospheric energy budget during huge geomagnetic activity using Cluster and ground-based data[J]. J. Geophys. Res., 2006, 111:A10211
    [16]
    Rosenqvist L, Opgenoorth H J, Rastaetter L, et al. Comparison of local energy conversion estimates from Cluster with global MHD simulations[J]. Geophys. Res. Lett., 2008, 35:L21104.
    [17]
    Anekallu C R, Palmroth M, Pulkkinen T I, et al. Energy conversion at the Earth magnetopause using single and multispacecraft methods[J]. J. Geophys. Res., 2011, 116:A11204
    [18]
    Lu J Y, Liu Z Q, Kabin K, et al. Three dimensional shape of the magnetopause: Global MHD results[J]. J. Geophy. Res., 2011, 116:A09237
    [19]
    Liu Z Q, Lu J Y, Kabin K, et al. Dipole tilt control of the magnetopause for southward IMF from global MHD simulations[J]. J. Geophys. Res., 2012, 117:A07207
    [20]
    Lu J Y, Jing H, Liu Z Q, et al. Energy transfer across the magnetopause for northward and southward interplanetary magnetic fields[J]. J. Geophys. Res., 2012, 118:1-13
    [21]
    Margaret G K, Christopher T R. Introduction to Space Physics[M]. Cambridge: Cambridge University Press, 1995: 261
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(951) PDF Downloads(1328) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return