Volume 35 Issue 6
Nov.  2015
Turn off MathJax
Article Contents
Han Jinpeng, Li Hui, Tang Binbin, Wang Chi. Invariant Modulation of IMF Clock Angle on the Solar Wind Energy Input into the Magnetosphere[J]. Journal of Space Science, 2015, 35(6): 673-678. doi: 10.11728/cjss2015.06.673
Citation: Han Jinpeng, Li Hui, Tang Binbin, Wang Chi. Invariant Modulation of IMF Clock Angle on the Solar Wind Energy Input into the Magnetosphere[J]. Journal of Space Science, 2015, 35(6): 673-678. doi: 10.11728/cjss2015.06.673

Invariant Modulation of IMF Clock Angle on the Solar Wind Energy Input into the Magnetosphere

doi: 10.11728/cjss2015.06.673
Funds:  Supported by the National Basic Research Program (2012CB825602), National Natural Science Foundation of China (NNSFC, 41204118, 41231067), and in part by the Specialized Research Fund for State Key Laboratories of China.
More Information
  • Corresponding author: Han Jinpeng,E-mail:hanjinpeng520@126.com
  • Received Date: 2015-01-23
  • Rev Recd Date: 2015-05-18
  • Publish Date: 2015-11-15
  • By use of the global PPMLR Magnetohydrodynamics (MHD) model, a serial of quasisteady- state numerical simulations were conducted to examine the modulation property of the interplanetary magnetic field clock angle θ on the solar wind energy input into the magnetosphere. All the simulations can be divided into seven groups according to different criteria of solar wind conditions. For each group, 37 numerical examples are analyzed, with the clock angle varying from 0° to 360° with an interval of 10°, keeping the other solar wind parameters (such as the solar wind number density, velocity, and the magnetic field magnitude) unchanged. As expected, the solar wind energy input into the magnetosphere is modulated by the IMF clock angle. The axisymmetrical bell-shaped curve peaks at the clock angle of 180°. However, the modulation effect remains invariant with varying other solar wind conditions. The function form of such an invariant modulation is found to be sin(θ/2)2.70 + 0.25.


  • loading
  • [1]
    Akasofu S I. Energy coupling between the solar-wind and the magnetosphere [J]. Space Sci. Rev., 1981, 28:121-190
    Perreault P, Akasofu S I. A study of geomagnetic storms[J]. Geophys. J. Roy. Astron. S. 1978, 54:547-573
    Scurry L, Russell C T. Proxy studies of energy transfer to the magnetosphere [J]. J. Geophys. Res. Space, 1991, 96:9541-9548
    Temerin M, Li X. Dst model for 1995-2002 [J]. J. Geophys. Res. Space, 2006, 111:A04221
    Tenfjord P, Østgaard N. Energy transfer and flow in the solar wind-magnetosphere-ionosphere system: A new coupling function [J]. J. Geophys. Res. Space, 2013, 118:5659-5672
    Vasyliunas V M, Kan J R, Siscoe G L, et al. Scaling relations governing magnetospheric energy transfer [J]. Planet Space Sci., 1982, 30:359-365
    Burton R K, Mcpherron R L, Russell C T. An empirical relationship between interplanetary conditions and Dst [J]. J. Geophys. Res., 1975, 80:4204-4214
    Kan J R, Lee L C. Energy coupling function and solar wind-magnetosphere dynamo [J]. Geophys. Res. Lett., 1979, 6:577-580
    Newell P T, Sotirelis T, Liou K, et al. A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables [J]. J. Geophys. Res., 2007, 112:A01206
    Wygant J R, Torbert R B, Mozer F S. Comparison of S3-3 polar cap potential drops with the interplanetary magnetic field and models of magnetopause reconnection [J]. J. Geophys. Res. Space, 1983, 88:5727-5735
    Jing H, Lu J Y, Kabin K, et al. MHD simulation of energy transfer across magnetopause during sudden changes of the IMF orientation [J]. Planet Space Sci., 2014, 97:50-59
    Lu J Y, Jing H, Liu Z Q, et al. Energy transfer across the magnetopause for northward and southward interplanetary magnetic fields [J]. J. Geophys. Res., 2013, 118:2021- 2033
    Pulkkinen T I, Palmroth M, Laitinen T. Energy as a tracer of magnetospheric processes: GUMICS-4 global MHD results and observations compared [J]. J. Atmos. Solar- Terr. Phy., 2008, 70:687-707
    Palmroth M, Pulkkinen T I, Janhunen P, et al. Stormtime energy transfer in global MHD simulation [J]. J. Geophys. Res., 2003, 108:1048-1051
    Wang C, Han J P, Li H, et al. Solar wind-magnetosphere energy coupling function fitting: Results from a global MHD simulation [J]. J. Geophys. Res., 2014, 119:6199- 6212
    Hu Y Q, Guo X C, Li G Q, et al. Oscillation of quasisteady Earth’s magnetosphere [J]. Chin. Phys. Lett., 2005, 22:2723-2726
    Hu Y Q, Guo X C,Wang C. On the ionospheric and reconnection potentials of the Earth: Results from global MHD simulations [J]. J. Geophys. Res., 2007, 112:A07215
    Han J P, Wang C, Li H. Energetics characteristics of the super magnetic storm on November 20, 2003 based on 3D global MHD simulation [J]. Sci. China: Earth Sci., 2014, 57:3035-3046
    LiW Y, Guo X C,Wang C. Spatial distribution of Kelvin- Helmholtz instability at low-latitude boundary layer under different solar wind speed conditions [J]. J. Geophys. Res., 2012, 117:A08230
    Wang C, Zhang J J, Tang B B, et al. Comparison of equivalent current systems for the substorm event of 8 March 2008 derived from the global PPMLR-MHD model and the KRM algorithm[J]. J. Geophys. Res., 2011, 116:A07207
    Wang C, Xia Z Y, Peng Z, et al. Estimating the open magnetic flux from the interplanetary and ionospheric conditions[J]. J. Geophys. Res., 2013, 118:1899-1903
    Wang C, Guo X C, Peng Z, et al. Magnetohydrodynamics (MHD) numerical simulations on the interaction of the solar wind with the magnetosphere: A review [J]. Sci. China: Earth Sci., 2013, 56:1141-1157
    Wang J Y, Wang C, Huang Z H, et al. Effects of the interplanetary magnetic field on the twisting of the magnetotail: Global MHD results [J]. J. Geophys. Res., 2014, 119:1887-1897
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(864) PDF Downloads(1266) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint