Volume 35 Issue 6
Nov.  2015
Turn off MathJax
Article Contents
WANG Wenbin, LIU Rongfang. A New Method of Orbit Prediction for LEO Satellites Using Empirical Accelerations[J]. Journal of Space Science, 2015, 35(6): 715-720. doi: 10.11728/cjss2015.06.715
Citation: WANG Wenbin, LIU Rongfang. A New Method of Orbit Prediction for LEO Satellites Using Empirical Accelerations[J]. Journal of Space Science, 2015, 35(6): 715-720. doi: 10.11728/cjss2015.06.715

A New Method of Orbit Prediction for LEO Satellites Using Empirical Accelerations

doi: 10.11728/cjss2015.06.715
  • Received Date: 2014-12-29
  • Rev Recd Date: 2015-06-11
  • Publish Date: 2015-11-15
  • A new method of orbit prediction for LEO satellites is proposed by using empirical accelerations to compensate for mismodelling of deterministic force models. The position, velocity and dynamical parameters such as CD, CR, and empirical accelerations are calculated in the orbit determination using reduced dynamic batch Least-Squares technique and GPS pseudorange observations. Therefore the position, velocity, CD, and CR can be used for prediction directly. Furthermore, the empirical accelerations are showed quasi-periodic and cosine characteristics with respect to time variable, in terms of which Fourier series were used to interpolate empirical accelerations. In this way, the fitted tangential empirical accelerations curve, which is added into deterministic force models to compensate for mismodelling of atmospheric drag model, forms enhanced-accuracy dynamic models that are used for orbit prediction. The GRACE-A real flight GPS pseudorange data and IGS Ultra-rapid products have been used to orbit determination and then the proposed method has been used to orbit prediction. The orbit determination results show that initial positioning accuracy is about 0.2m and velocity accuracy is about 1.0×10-4m·s-1. For a 72-hour orbit pass, the prediction accuracy is better than 60m, which is averagely improved about 2.3 times when compared to conventional dynamic models without considering empirical acceleration series fitting models. The proposed orbit determination and prediction scheme are beneficial to establish advanced, even onboard, satellite autonomous navigation system.

     

  • loading
  • [1]
    Vallado D A. Fundamentals of Astrodynamics and Applications[M]. New York: Springer-Verlag, 2007
    [2]
    Montenbruck O, Gill E. Satellite Orbits: Models, Methods and Applications[M]. Heidelberg: Springer-Verlag, 2000
    [3]
    Dow J, Neilan R E, Rizos C.The international GNSS Service in a changing landscape of Global Navigation Satellite Systems[J]. J. Geod., 2009, 83(3):191-198
    [4]
    Montenbruck O, Helleputtevan T, Kroes R, et al. Reduced dynamic orbit determination using GPS code and carrier measurements[J]. Aeros. Sci. Tech., 2005, 9(3):261-271
    [5]
    Kroes R. Precise Relative Positioning of Formation Flying Spacecraft Using GPS[D]. Delft: Delft University of Technology, 2006
    [6]
    Wang Wenbin, Liu Rongfang. Precise orbit determination based on reduced dynamic batch LSQ estimation method using dual frequency GPS observations[J]. Chin. J. Space Sci., 2014, 34(4):460-467. In Chinese (王文彬, 刘荣芳. 基于双频GPS观测的简化动力学最小二乘批处理精密定轨[J]. 空间科学学报, 2014, 34(4):460-467)
    [7]
    Arbinger C, D'Amico S. Impact of orbit prediction accuracy on low Earth remote sensing flight dynamics operations[C]//Proceedings of the 18th International Symposium on Space Flight Dynamics. Munich, Germany: German Space Operations Center, 2004
    [8]
    Florio S De, Neff T, Zehetbauer T. Analysis of orbit propagation and relative position accuracy of small satellites for SAR interferometry[C]//5th IAA Symposium on Small Satellites for Earth Observation. Berlin, Germany: International Academy of Astronautics, 2005
    [9]
    Liu Shushi, Gong Jiancun, Liu Siqing, et al. Atmospheric dragco efficient calibration in medium-term orbit prediction[J]. J. Astron., 2013, 34(2):157-162. In Chinese (刘舒莳, 龚建村, 刘四清,等. 中长期轨道预报中大气阻力系数补 偿算法的研究[J]. 宇航学报, 2013, 34(2):157-162 )
    [10]
    Tang Jingshi, Liu Lin. On long-term orbit prediction for Low Earth Orbit spacecraft[J]. J. Spacec. TT&C Tech., 2014, 33(1):59-64. In Chinese (汤靖师, 刘林. 低轨航天器长期轨道预报的初步研究[J]. 飞行器测控学报, 2014, 33(1):59-64)
    [11]
    Jäggi A, Bock H, Floberghagen R. GOCE orbit predictions for SLR tracking[J]. GPS Sol., 2011, 15(2):129-137
    [12]
    Center for Space Research, University of Texas at Austin. GRACE gravity model[OL]. [2013-12-03]. ftp://ftp.csr. utexas.edu/pub/grav/
    [13]
    Picone J M, Hedin A E, Drob D P. NRL-MSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues[J]. J. Geophys. Res., 2003, 107(A12):SIA15-1-16
    [14]
    Knocke P C, Ries J C, Tapley B D. Earth radiation pressure effects on satellites[C]//AIAA/AAS Astrodynamics Conference. Minneapolis, Minnesota: AIAA, 1988:577-587
    [15]
    NASA PO. DAAC-JPL GRACE Level 1B products[OL]. [2013-11-21]. ftp://podaac.jpl.nasa.gov/allData/grace/
    [16]
    University of Texas Center for Space Research. GRACE Product Specification Document v4.5[R]. Austin: University of Texas Center for Space Research, 2007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1090) PDF Downloads(1090) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return