Volume 35 Issue 6
Nov.  2015
Turn off MathJax
Article Contents
Xu Yongzhi, Ning Xiaolin. A New INS/VNS Integrated Navigation Method for Planetary Exploration Rover[J]. Journal of Space Science, 2015, 35(6): 721-729. doi: 10.11728/cjss2015.06.721
Citation: Xu Yongzhi, Ning Xiaolin. A New INS/VNS Integrated Navigation Method for Planetary Exploration Rover[J]. Journal of Space Science, 2015, 35(6): 721-729. doi: 10.11728/cjss2015.06.721

A New INS/VNS Integrated Navigation Method for Planetary Exploration Rover

doi: 10.11728/cjss2015.06.721
  • Received Date: 2014-09-16
  • Rev Recd Date: 2015-03-14
  • Publish Date: 2015-11-15
  • In traditional INS/VNS integrated navigation, the motion errors are usually used as the state vector, and relative motion errors between the inertial and vision navigation are used as the measurement. Since the relative motion is related to both the last and current states, traditional methods augment the position and attitude errors at the last time to the state vector to build the measurement model. The augmented states are considered as constant, and it generates new errors into the state model. Meanwhile, the measurement errors are analyzed based on ideal positions and attitudes at both the last and current time, which results in the measurement relationship with both the last and the current states. In this paper, a new INS/VNS model uses INS error equation as the state model, relative motion errors as the measurement, and attitude errors are described as quaternion error in the measurement model. The analyses of measurement errors are based on the integrated navigation estimation positions and attitudes at the last time, hence it does not need to augment the state, so the measurement only relates to the current state. The lunar surface simulation and experiment on the ground both show that the represented INS/VNS method can achieve high position and attitude estimation accuracy.

     

  • loading
  • [1]
    Titterton D H, Weston J L. Strapdown Inertial Navigation Technology (2nd Edition)[M]. UK: Institution of Engineering and Technology, 2004
    [2]
    Sun Shouming, Zheng Wei, Tang Guojian. Research on X-ray pulsars/SINS integrated navigation[J]. Chin. J. Space Sci., 2010, 30(6):579-583. In Chinese (孙守明, 郑伟, 汤国建. X射线脉冲星/SINS组合导航研究[J]. 空间科学学报, 2010, 30(6):579-583)
    [3]
    Lu W, Xiang Z, Liu J. High-performance visualodometry with two-stage local binocular BA and GPU[C]//Intelligent Vehicles Symposium (IV). Gold Coast, QLD: IEEE, 2013:1107-1112
    [4]
    Yao Rongbin, Ding Shangwen, Li Shengquan, et al. Measure for relative position and pose of RVD spacecraftsbased on trinocular vision method[J]. Chin. J. Space Sci., 2011, 31(4):527-33. In Chinese (姚荣斌, 丁尚文, 李生权, 等. 基于三目视觉的航天器交会对接位 姿测量方法研究[J]. 空间科学学报, 2011, 31(4):527-533)
    [5]
    Wang Baofeng, Zhou Jianliang, Tang Geshi, et al. Research on visual localization method of lunar rover[J]. Sci. China: Inf. Sci., 2014, 44(4):452-60. In Chinese (王保丰, 周建亮, 唐歌实, 等. 嫦娥三号巡视器视觉定位方法[J]. 中国科学: 信息科学, 2014, 44(4):452-460)
    [6]
    Maimone M, Cheng Y, Matthies L. Two years of visualodometry on the Mars exploration rovers[J]. J. Field Robot., 2007, 24(3):169-186
    [7]
    Grotzinger J P, Crisp J, Vasavada A R, et al. Mars Science Laboratory mission and science investigation[J]. Space Sci. Rev., 2012, 170(1-4):5-56
    [8]
    Liu Chuankai, Wang Baofeng, Wang Jia, et al.Integrated INS and vision based orientation determination and positioning of CE-3 lunar rover[J]. J. Spacec. TT&C Tech., 2014, 33(3):250-257. In Chinese (刘传凯, 王保丰, 王镓, 等. 嫦娥三号巡视器的惯导与 视觉组合定姿定位[J]. 飞行器测控学报, 2014, 33(3):250-257)
    [9]
    Mourikis A I, Trawny N, Roumeliotis S I, et al. Vision-aided inertial navigation for spacecraft entry, descent, and landing[J]. IEEE Trans. Robot., 2009, 25(2):264-280
    [10]
    Mourikis A I, Roumeliotis S I. A multi-state constraint Kalman filter for vision-aided inertial navigation[C]//Proceedings of International Conference on Robotics and Automation. Roma: IEEE, 2007:3565-3572
    [11]
    Tardif J P, George M, Laverne M, et al. A new approach to vision-aided inertial navigation[C]//2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Taipei: IEEE, 2010:4161-4168
    [12]
    Chilian A, Hirschmuller H, Gorner M. Multisensor data fusion for robust pose estimation of a six-legged walking robot[C]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). San Francisco, CA: IEEE, 2011:2497-2504
    [13]
    Di Corato F, Innocenti M, Pollini L. An entropy-like approach to vision-aided inertial navigation[C]//Preprints of 18th International Federation of Automatic Control (IFAC)World Congress. Milano, Italy: IFAC, 2011: 13789-13794
    [14]
    Roumeliotis S I, Johnson A E, Montgomery J F. Augmen-ting Inertial Navigation with Image-Based Motion Estimation[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Washington: IEEE, 2002:4326-4333
    [15]
    Badino H, Yamamoto A, Kanade T. Visual odometry by multi-frame feature integration[C]//IEEE International Conference on Computer Vision for Autonomous Driving. Sydney, Australia: IEEE, 2013
    [16]
    Olson C F, Matthies L H, Schoppers M, et al. Rover navigation using stereo ego-motion[J]. Robot. Auton. Syst., 2003, 43(4):215-229
    [17]
    Geiger A, Lenz P, Urtasun R. Are we ready for Autono-mous Driving? The KITTI Vision Benchmark Suite[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI: IEEE, 2012:3354-3361
    [18]
    Geiger A, Lenz P, Stiller C, et al. Vision meets robotics:The KITTI dataset[J]. Int. J. Robot. Res., 2013, 11: 1231-1237
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1121) PDF Downloads(1203) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return