Volume 36 Issue 3
May  2016
Turn off MathJax
Article Contents
XIONG Ming, LIU Ying, LIU Hao, LI Baoquan, ZHENG Jianhua, ZHANG Cheng, XIA Lidong, ZHANG Hongxin, RAO Wei, CHEN Changya, SUN Weiying, WU Xia, DENG Yuanyong, HE Han, JIANG Bo, WANG Yuming, WANG Chuanbing, SHEN Chenglong, ZHANG Haiying, ZHANG Shenyi, YANG Xuan, SANG Peng, WU Ji. Overview of the Solar Polar Orbit Telescope Project for Space Weather Mission[J]. Journal of Space Science, 2016, 36(3): 245-266. doi: 10.11728/cjss2016.03.245
Citation: XIONG Ming, LIU Ying, LIU Hao, LI Baoquan, ZHENG Jianhua, ZHANG Cheng, XIA Lidong, ZHANG Hongxin, RAO Wei, CHEN Changya, SUN Weiying, WU Xia, DENG Yuanyong, HE Han, JIANG Bo, WANG Yuming, WANG Chuanbing, SHEN Chenglong, ZHANG Haiying, ZHANG Shenyi, YANG Xuan, SANG Peng, WU Ji. Overview of the Solar Polar Orbit Telescope Project for Space Weather Mission[J]. Journal of Space Science, 2016, 36(3): 245-266. doi: 10.11728/cjss2016.03.245

Overview of the Solar Polar Orbit Telescope Project for Space Weather Mission

doi: 10.11728/cjss2016.03.245
Funds:  Supported by the Strategic Priority Research Program on Space Science (XDA04060801,XDA04060802,XDA04060803,XDA04060804) of Chinese Academy of Sciences,the Specialized Research Fund for State Key Laboratory of China,the Chinese National Science Foundation (41374175,41204129),and the CAS/SAFEA international Partnership Program for Creative Research Teams
More Information
  • Author Bio:

    XIONG Ming,E-mail:mxiong@spaceweather.ac.cn

  • Received Date: 2016-02-21
  • Publish Date: 2016-05-15
  • The Solar Polar ORbit Telescope (SPORT) project for space weather mission has been under intensive scientific and engineering background studies since it was incorporated into the Chinese Space Science Strategic Pioneer Project in 2011.SPORT is designed to carry a suite of remote-sensing and in-situ instruments to observe Coronal Mass Ejections (CMEs),energetic particles,solar high-latitude magnetism,and the fast solar wind from a polar orbit around the Sun. The first extended view of the polar regions of the Sun and the ecliptic enabled by SPORT will provide a unique opportunity to study CME propagation through the inner heliosphere,and the solar high-latitude magnetism giving rise to eruptions and the fast solar wind.Coordinated observations between SPORT and other spaceborne/ground-based facilities within the International Living With a Star (ILWS) framework can significantly enhance scientific output.SPORT is now competing for official selection and implementation during China's 13th Five-Year Plan period of 2016-2020.


  • loading
  • [1]
    National Science and Technology Council. National Space Weather Program Strategic Plan[M]. Washington:Office of the Federal Coordinator for Meteorological Services and Supporting Research, 2010
    National Science and Technology Council. National Space Weather Strategy:Space Weather Operations, Research, and Mitigation (SWORM) Task Force[M]. Washington:Executive Office of the President of the United States, 2015
    BELCHER J W, DAVIS L Jr. Large-amplitude Alfven waves in the interplanetary medium, 2[J]. J. Geophys. Res., 1971, 76:3534-3563
    MATTHAEUS W H, GOLDSTEIN M L. Measurement of the rugged invariants of magnetohydrodynamic turbulence in the solar wind[J]. J. Geophys. Res., 1982, 87:6011-6028
    TU C Y, MARSCH E. MHD structures, waves and turbulence in the solar wind:observations and theories[J]. Space Sci. Rev., 1995, 73:1-210
    LI B, LI X. Propagation of non-Wentzel-KramersBrillouin alfven waves in a multi-component solar wind with differential ion flow[J]. Astrophys. J., 2007, 661:1222-1233
    FORBES T G, LINKER J A, CHEN J, et al. CME theory and models[J]. Space Sci. Rev., 2006, 123:251-302
    GOPALSWAMY N. Properties of interplanetary coronal mass ejections[J]. Space Sci. Rev., 2006, 124:145
    WEBB D F, Howard T A. Coronal mass ejections:observations[J]. Living Rev. Solar Phys., 2012, 9:3
    GOSLING J T, MCCOMAS D J, PHILLIPS J L, BAME S J. Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections[J]. J. Geophys. Res., 1991, 96:7831-7839
    ZHANG J, RICHARDSON I G, WEBB D F, et al. Solar and interplanetary sources of major geomagnetic storms (Dst ≤-100 nT) during 1996-2005[J]. J. Geophys. Res., 2007, 112(A10):A10102
    BURLAGA L F, BEHANNON K W, KLEIN L W. Compound streams, magnetic clouds, and major geomagnetic storms[J]. J. Geophys. Res., 1987, 92:5725-5734
    BURLAGA L F, PLUNKETT S P, ST CYR O C. Successive CMEs and complex ejecta[J]. J. Geophys. Res., 2002, 107:1266
    WANG Y M, YE P Z, WANG S. Multiple magnetic clouds:several examples during March-April 2001[J]. J. Geophys. Res., 2003, 108:1370
    XIONG M, ZHENG H N, WANG Y M, WANG S. Magnetohydrodynamic simulation of the interaction between interplanetary strong shock and magnetic cloud and its consequent geoeffectiveness[J]. J. Geophys. Res., 2006, 111:A08105
    XIONG M, ZHENG H N, WU S T, WANG Y M, WANG S. Magnetohydrodynamic simulation of the interaction between two interplanetary magnetic clouds and its consequent geoeffectiveness[J]. J. Geophys. Res., 2007, 112:A11103
    SHEN C, WANG Y, WANG S, et al. Super-elastic collision of large-scale magnetized plasmoids in the heliosphere[J]. Nat. Phys., 2012, 8:923
    LIU Y, LUHMANN J G, KAJDIC P, et al. Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections[J]. Nat. Comm., 2014, 5:3481
    Liu Y, Luhmann J G, Müller-Mellin R, et al. A comprehensive view of the 2006 December 13 CME:from the Sun to interplanetary space[J]. Astrophys. J., 2008, 689:563-571
    ZHANG M, LOW B C. The hydromagnetic nature of solar coronal mass ejections[J]. Ann. Rev. Astron. Astrophys., 2005, 43:103-137
    PEVTSOV A A, BERGER, M A, NINDOS A, et al. Magnetic helicity, tilt, and twist[J]. Space Sci. Rev., 2015, 186:285-324
    KAISER M L, KUCERA T A, DAVILA J M, et al. The STEREO mission:An introduction[J]. Space Sci. Rev., 2008, 136:5-16
    HOWARD R A, MOSES J D, VOURLIDAS A, et al. Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI)[J]. Space Sci. Rev., 2008, 136:67-115
    EYLES C J, HARRISON R A, DAVIS C J, et al. The Heliospheric Imagers onboard the STEREO mission[J]. Solar Phys., 2009, 254:387-445
    MARSDEN R G, WENZEL K P. The International Solar Polar Mission (ISPM)[J]. Plasma Astrophys., 1981, 164:51-59
    WENZEL K P, MARSDEN R G, PAGE D E, SMITH E J. The Ulysses mission[J]. Astron. Astrophys. Supp., 1992, 92:207
    SMITH E J, MARSDEN R G, PAGE D E. Ulysses above the Sun's south pole:an introduction[J]. Science, 1995, 268:1005-1007
    MCCOMAS D J, BARRACLOUGH B L, FUNSTEN H O, et al. Solar wind observations over Ulysses' first full polar orbit[J]. J. Geophys. Res., 2000, 105:10419-10434
    BALOGH A, MARSDEN R G, SMITH E J. The Heliosphere near Solar Minimum:the Ulysses Perspective[R]. Chichester:Springer-Praxis, 2001
    WU J, SUN W Y, ZHENG J H, et al. Imaging interplanetary CMEs at radio frequency from solar polar orbit[J]. Adv. Space Res., 2011, 48:943
    WU J, SUN L L. Strategic priority program on space science[J]. Chin. J. Space Sci., 2014, 34(5):505-515
    JACKSON B V, HICK P P, BUFFINGTON A, et al. Three-dimensional reconstruction of heliospheric structure using iterative tomography:a review[J]. J. Atmos. Solar-Terre. Phys., 2011, 73(10):1214-1227
    THERNISIEN A, VOURLIDAS A, HOWARD R A. Forward modeling of coronal mass ejections using STEREO/SECCHI data[J]. Solar Phys., 2009, 256:111
    LIU Y, DAVIES J A, LUHMANN J G, et al. Geometric triangulation of imaging observations to track coronal mass ejections continuously out to 1 AU[J]. Astrophys. J., 2010, 710:L82-L87
    LUGAZ N, HERNANDEZ-CHARPAK J N, ROUSSEV I I, et al. Determining the azimuthal properties of coronal mass ejections from multi-spacecraft remote-sensing observations with STEREO SECCHI[J]. Astrophys. J., 2010, 715:493-499
    DAVIES J A, PERRY C H, TRINES R M G M, et al. Establishing a stereoscopic technique for determining the kinematic properties of solar wind transients based on a generalized self-similarly expanding circular geometry[J]. Astrophys. J., 2013, 777:167
    ROUILLARD A P, DAVIES J A, FORSYTH R J, et al. A solar storm observed from the Sun to Venus using the STEREO, Venus Express, and MESSENGER spacecraft[J]. J. Geophys. Res., 2009, 114:A07106
    MOSTL C, TEMMER M, ROLLETT T, FARRUGIA C J, et al. STEREO and WIND observations of a fast ICME flank triggering a prolonged geomagnetic storm on 5-7 April 2010[J]. Geophys. Res. Lett., 2010, 37:L24103
    LUGAZ N, VOURLIDAS A, ROUSSEV I I, MORGAN H. Solar-terrestrial simulation in the STEREO era:the 24-25 January 2007 eruptions[J]. Solar Phys., 2009, 256:269
    XIONG M, DAVIES J A, BISI M M, OWENS M J, FALLOWS R A, DORRIAN G D. Effects of ThomsonScattering geometry on white-light imaging of an interplanetary shock:synthetic observations from forward magnetohydrodynamic modelling[J]. Solar Phys., 2013, 285:369-389
    XIONG M, DAVIES J A, FENG X, OWENS M J, HARRISON R A, DAVIS C J, LIU Y. Using coordinated observations in polarized white light and Faraday rotation to probe the spatial position and magnetic field of an interplanetary sheath[J]. Astrophys. J., 2013, 777:32
    BABCOCK H D. The Sun's polar magnetic field[J]. Astrophys. J., 1959, 130:364
    TSUNETA S, ICHIMOTO K, KATSUKAWA Y, et al. The magnetic landscape of the Sun's polar region[J]. Astrophys. J., 2008, 688:1374-1381
    SUN X, HOEKSEMA J T, LIU Y, ZHAO J. On polar magnetic field reversal and surface flux transport during solar cycle 24[J]. Astrophys. J., 2015, 798:114
    PETRIE G J D. Solar magnetism in the polar regions[J]. Living Rev. Solar Phys., 2015, 12:5
    WANG Y M, LEAN J, SHEELEY N R. Role of a variable meridional flow in the secular evolution of the Sun's polar fields and open flux[J]. Astrophys. J. Lett., 2002, 577:L53-L57
    CHOUDHURI A R, CHATTERJEE P, JIANG J. Predicting solar cycle 24 with a solar dynamo model[J]. Phys. Rev. Lett., 2007, 98:131103
    UPTON L, HATHAWAY D H. Predicting the Sun's polar magnetic fields with a surface flux transport model[J]. Astrophys. J., 2014, 780:5
    SUN X, LIU Y, HOEKSEMA J T, HAYASHI K, ZHAO X. A new method for polar field interpolation[J]. Solar Phys., 2011, 270:9
    XIA L D. Equatorial Coronal Holes and Their Relation to the High-speed Solar Wind Streams[D]. Göttingen:Georg-August-University, 2003
    XIA L D, MARSCH E, WILHELM K. On the network structures in solar equatorial coronal holes:observations of SUMER and MDI on SOHO[J]. Astron. Astrophys., 2004, 424(3):1025-1037
    TIAN H, DELUCA E E, CRANMER S R, et al. Prevalence of small-scale jets from the networks of the solar transition region and chromosphere[J]. Science, 2014, 346:1255711
    TU C Y, ZHOU C, MARSCH E, XIA L D. Solar wind origin in coronal funnels[J]. Science, 2005, 308:519
    PARKER E N. Dynamics of the interplanetary gas and magnetic fields[J]. Astrophys. J., 1958, 128:664
    CRANMER S R. Coronal holes and the high-speed solar wind[J]. Space Sci. Rev., 2002, 101:229
    FELDMAN U, LANDI E, SCHWADRON N A. On the sources of fast and slow solar wind[J]. J. Geophys. Res., 2005, 110(A7):A07109
    HOEKSEMA J T, WILCOX J M, SCHERRER P H. The structure of the heliospheric current sheet:1978-1982[J]. J. Geophys. Res., 1983, 88:9910-9918
    SMITH E J. The heliospheric current sheet[J]. J. Geophys. Res., 2001, 106(A8):15819-15832
    ZHAO X P, HOEKSEMA J T, SCHERRER P H. Prediction and understanding of the north-south displacement of the heliospheric current sheet[J]. J. Geophys. Res., 2005, 110(A10):A10101
    BURLAGA L F. Intermittent turbulence in the solar wind[J]. J. Geophys. Res., 1991, 96:5847-5851
    ROBERTS O W, LI X, LI B. Kinetic plasma turbulence in the fast solar wind measured by Cluster[J]. Astrophys. J., 2013, 769:58
    STIX T H. Waves in Plasmas[M]. New York:American Institute of Physics, 1992
    LEAMON R J, SMITH C W, NESS N F, MATTHAEUS W H, WONG H K. Observational constraints on the dynamics of the interplanetary magnetic field dissipation range[J]. J. Geophys. Res., 1998, 103:4775
    BALE S D, KELLOGG P J, MOZER F S, HORBURY T S, REME H. Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence[J]. Phys. Rev. Lett., 2005, 94(21):215002
    HE J, MARSCH E, TU C, YAO S, TIAN H. Possible evidence of Alfven-cyclotron waves in the angle distribution of magnetic helicity of solar wind turbulence[J]. Astrophys. J., 2011, 731:85
    JOKIPⅡ J R. Cosmic-ray propagation. I. Charged parti-cles in a random magnetic field[J]. Astrophys. J., 1966, 146:480
    ZHANG M, QIN G, RASSOUL H. Propagation of solar energetic particles in three-dimensional interplanetary magnetic fields[J]. Astrophys. J., 2009, 692:109-132
    MATTHAEUS W H, QIN G, BIEBER J W, ZANK G P. Nonlinear collisionless perpendicular diffusion of charged particles[J]. Astrophys. J. Lett., 2003, 590:L53-L56
    LEE M A. Coupled hydromagnetic wave excitation and ion acceleration at interplanetary traveling shocks[J]. J. Geophys. Res., 1983, 88:6109-6119
    ZANK G P, RICE W K M, WU C C. Particle acceleration and coronal mass ejection driven shocks:a theoretical model[J]. J. Geophys. Res., 2000, 105(A11):25079-25096
    REAMES D V, BARBIER L M, NG C K. The spatial distribution of particles accelerated by coronal mass ejectiondriven shocks[J]. Astrophys. J., 1996, 466:473
    REAMES D V, KAHLER S W, NG C K. Spatial and temporal invariance in the spectra of energetic particles in gradual solar events[J]. Astrophys. J., 1997, 491:414-420
    HARRISON R A, DAVIS C J, EYLES C J, et al. First imaging of coronal mass ejections in the heliosphere viewed from outside the Sun-Earth line[J]. Solar Phys., 2008, 247:171-193
    DAVIES J A, HARRISON R A, ROUILLARD A P, et al. A synoptic view of solar transient evolution in the inner heliosphere using the heliospheric imagers on STEREO[J]. Geophys. Res. Lett., 2009, 36:L02102
    JACKSON B, BUFFINGTON A, HICK P, et al. A heliospheric imager for deep space:lessons learned from Helios, SMEI, and STEREO[J]. Solar Phys., 2010, 265:257-275
    DEFOREST C E, HOWARD T A. Feasibility of heliospheric imaging from near Earth[J]. Astrophys. J., 2015, 804:126
    GLOECKLER G, BALSIGER H, BURGI A, et al. The solar wind and suprathermal ion composition investigation on the WIND spacecraft[J]. Space Sci. Rev., 1995, 71:79-124
    GLOECKLER G, CAIN J, IPAVICH F M, et al. Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft[J]. Space Sci. Rev., 1998, 86:497
    FENG X, YANG L, XIANG C, et al. Three-dimensional solar wind modeling from the Sun to Earth by a SIP-CESE MHD model with a six-component grid[J]. Astrophys. J., 2010, 723:300
    FENG X, ZHANG M, ZHOU Y. A new three-dimensional solar wind model in spherical coordinates with a sixcomponent grid[J]. Astrophys. J., 2014, 214(Supp.):6
    ZHOU Y, FENG X, ZHAO X. Using a 3-D MHD simulation to interpret propagation and evolution of a coronal mass ejection observed by multiple spacecraft:the 3 April 2010 event[J]. J. Geophys. Res., 2014, 119:9321-9333
    FENG X, MA X, XIANG C. Data-driven modeling of the solar wind from 1 Rs to 1 AU[J]. J. Geophys. Res., 2015, 120:10159-10174
    SUN W Y, WU J. A study of the Bremsstrahlung of plasma at about 1 AU in times of quiet Sun and flare activity[J]. Chin. Astron. Astrophys., 2005, 29:149
    SUN W Y, WU J. Radiation mechanisms of the plasma near point L1 affected by CMEs and associated microwave bursts[J]. Chin. Astron. Astrophys., 2005, 29:413
    WU J, HUANG Y H, DONG X L. Image retrieval algorithm of two-dimensional synthetic aperture radiometer[C]//Sydney:IEEE Geoscience and Remote Sensing Symposium (IGARSS), 2001:3268-3270
    LIU H, MAAGT DE P, CHRISTENSEN J, et al. Radiometric analysis of the rotating synthetic aperture radiometers utilizing grid-based measurement approach[C]//Barcelona:IEEE Geoscience and Remote Sensing Symposium (IGARSS), 2007:235-238
    ZHANG C, WU J, LIU H, et al. Scan scheme and imaging algorithm of Solar Polar Orbiter Telescope (SPORT)[C]//Vancouver:IEEE Geoscience and Remote Sensing Symposium (IGARSS), 2011:2266-2269
    HOWARD T A, TAPPIN S J. Interplanetary coronal mass ejections observed in the heliosphere:1. Review of theory[J]. Space Sci. Rev., 2009, 147:31-54
    DEFOREST C E, HOWARD T A, TAPPIN S J. Observations of detailed structure in the solar wind at 1 AU with STEREO/HI-2[J]. Astrophys. J., 2011, 738:103
    HARRISON R A, DAVIS C J, EYLES C J. The STEREO heliospheric imager:how to detect CMEs in the heliosphere[J]. Adv. Space Res., 2005, 36:1512-1523
    ZHANG H X, LU Z W, XIA L D, LIU H, LI P. Stray light suppressing of optical system in white light coronagraph[J]. Opt. Prec. Eng.. 2009, 17(10):2371-2376
    SUN M Z, ZHANG H X, BU H Y, et al. Computation of the diffracted field of a toothed occulter by the semiinfinite rectangle method[J]. J. Opt. Soc. Am. A, 2013, 30(10):2140-2149
    BRUECKNER G, HOWARD R, KOOMEN M, et al. The Large Angle Spectroscopic Coronagraph (LASCO)[J]. Solar Phys., 1995, 162:357-402
    DELABOUDINIERE J P, ARTZNER G E, BRUNAUD J, et al. EIT:Extreme-ultraviolet Imaging Telescope for the SOHO mission[J]. Solar Phys., 1995, 162(1/2):291-312
    LI B Q, ZHU G W, WANG S J, LIN H A, et al. Solar X-EUV Imaging Telescope[J]. Chin. J. Geophys., 2005, 48(2):235-242
    LI B Q, LI H T, ZHOU S Z, JIANG B. The Lymanalpha imager onboard Solar Polar ORbit Telescope[J]. Proc. SPIE, 2013, 9042(4):237-244
    SCHERRER P H, BOGART R S, BUSH R I, et al. The solar oscillations investigation-Michelson Doppler imager[J]. Solar Phys., 1995, 162:129
    SCHERRER P H, SCHOU J, BUSH R I, et al. The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO)[J]. Solar Phys., 2012, 275:207-227
    WANG D G, DENG Y Y, AI G X. Analysis of a new polarimeter for space solar telescope[J]. Proc. SPIE. 2003:406-413
    AZZAM R M A. Division-of-amplitude Photopolarimeter (DOAP) for the simultaneous measurement of all four Stokes parameters of light[J]. J. Mod. Opt., 1982, 29(5):685-689
    MULLER D, MARSDEN R G, ST CYR O C, GILBERT H R. Solar Orbiter:exploring the Sun heliosphere connection[J]. Solar Phys., 2013, 285:25-70
    SMITH E J, WENZEL K P, PAGE D E. Ulysses at Jupiter:an overview of the encounter[J]. Science, 1992, 257:1503
    SUN Z Z, ZHANG T X, ZHANG H, et al. The technical design and achievements of Chang'E-3 probe[J]. Sci. Sin. Tech., 2014, 44:331-343
    Future out-of-ecliptic and in-situ observations of the Sun[R]//International Space Science Institute (ISSI) Annual Report 2010-2011. Bern:International Space Science Institute,2011
    Solar Probe Plus report of the Science and Technology Definition Team (STDT)[R]. Washington:NASA, 2008
    FOX N J, VELLI M C, BALE S D, et al. The Solar Probe Plus mission:Humanity's first visit to our star[J]. Space Sci. Rev., 2015. DOI: 10.1007/s11214-015-0211-6
    MARSDEN R G, MULLER D. Solar Orbiter definition study report (Red Book). Paris:ESA, 2011
    KUZNETSOV V D, ORAEVSKY V N. Russian plans for solar and heliospheric physics[C]//Proceedings of a crossroads for European solar & heliospheric physics. Tenerife:ESA, 1998:417
    ORAEVSKY V N, GALEEV A A, KUZNETSOV V D, ZELENYI L M. Russian payload for "interhelioprobe" ("interhelios") mission[J]. Adv. Space Res., 2002, 29:2041
    MACDONALD M, ATZEI A, FALKNER P, et al. Solar polar orbiter:a solar sail technology reference study[J]. J. Spacecraft Rockets, 2006, 43:960-972
    APPOURCHAUX T, LIEWER P, WATT M, et al. POLAR investigation of the Sun POLARIS[J]. Exp. Astron., 2009, 23:1079-1117
    LIU Z X. Geospace Double Star exploration project[J]. Chin. J. Geophys., 2001, 44(4):573-580
    WU J, ZHU G W, ZHAO H, et al. Overview of scientific objects of China-Russia joint Mars exploration program YH-1[J]. Chin. J. Space Sci., 2009, 29(5):449-455
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1050) PDF Downloads(2552) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint