Volume 36 Issue 3
May  2016
Turn off MathJax
Article Contents
YAN Fengchan, REN Zhipeng, WAN Weixing, LIU Libo, LONG Zhiyong. Longitudinal Variations of Total Ion Density in the Topside Ionosphere[J]. Journal of Space Science, 2016, 36(3): 287-296. doi: 10.11728/cjss2016.03.287
Citation: YAN Fengchan, REN Zhipeng, WAN Weixing, LIU Libo, LONG Zhiyong. Longitudinal Variations of Total Ion Density in the Topside Ionosphere[J]. Journal of Space Science, 2016, 36(3): 287-296. doi: 10.11728/cjss2016.03.287

Longitudinal Variations of Total Ion Density in the Topside Ionosphere

doi: 10.11728/cjss2016.03.287
  • Received Date: 2015-04-10
  • Rev Recd Date: 2016-03-31
  • Publish Date: 2016-05-15
  • Based on DMSP F13 Satellite observations from 1996 to 2005,the seasonal,geomagnetic latitude and solar cycle variations of the total ion density in the sunset topside ionosphere at middle and low latitudes are investigated.Results indicate that the longitudinal variation of the total ion density is obviously different between the low latitudes and the middle latitudes.Annual components of longitude structures seasonal variations are dominated at most latitudes,and these longitudinal structures show latitudinal dependence:relative strength of mid-latitude wavenumber-one structure in the southern hemisphere are much greater than that in the northern hemisphere;the hemispheric asymmetry of wavenumber-two structure is remarkable at middle and low latitudes;wavenumberthree structure and wavenumber-four structure are both much more dominant in the low latitudes than in the middle latitudes.Besides,contributions of different wave structures to total ion density are also examined:wavenumber-one structure is dominant at southern middle latitudes,and in the northern winter,the region around 15°N is mainly controlled by wavenumber-two structure. Wavenumber-three structure and wavenumber-four structure only prevail at low latitudes.Contributions of different wave structures change with solar cycle variations.

     

  • loading
  • [1]
    XIONG Nianlu, TANG Cunchen, LI Xingjian. Introduction of Ionospheric Physics[M]. Wuhan:Wuhan University Publishing Company, 1997(熊年禄,唐存琛,李行健.电力层物理概论[M].武汉:武汉大学出版社, 1997)
    [2]
    BALAN N, OTSUKA Y, FUKAO S, et al. Annual variations of the ionosphere:a review based on MU radar observations[J]. Adv. Space Res., 2000, 25(1):153-162
    [3]
    PEDATELLA N M, FORBES J M, MAUTE A, et al. Longitudinal variations in the F region ionosphere and the topside ionosphere-plasmasphere:observations and model simulations[J]. J. Geophys. Res., 2011, 116, A12309. DOI: 10.1029/2011JA016600
    [4]
    SU Y Z, BAILEY G J, FUKAO S. Altitude dependencies in the solar activity variations of the ionospheric electron density[J]. J. Geophys. Res., 1999, 104(A7):14879-14891
    [5]
    PARK S M, KIM H, MIN S, et al. Effects of solar activity variations on the low latitude topside nighttime ionosphere[J]. Adv. Space Res., 2008, 42:626-633
    [6]
    SAGAWA E, IMMEL T J, FREY H U, et al. Longitudinal structure of the equatorial anomaly in the nighttime ionosphere observed by IMAGE/FUV[J]. J. Geophys. Res., 2005, 110, A11302. DOI: 10.1029/2004JA010848
    [7]
    LIN C H, HSIAO C C, LIU J Y, et al. Longitudinal structure of the equatorial ionosphere:Time evolution of the four-peaked EIA structure[J]. J. Geophys. Res., 112, A12305. DOI: 10.1029/2007JA012455
    [8]
    WAN W, LIU L, PI X, et al. Wavenumber-4 patterns of the total electron content over the low latitude ionosphere[J]. Geophys. Res. Lett., 2008, 35, L12104. DOI: 10.1029/2008GL033755
    [9]
    WAN W, XIONG J, REN Z, et al. Correlation between the ionospheric WN4 signature and the upper atmospheric DE3 tide[J]. J. Geophys. Res., 2010, 115, A11303. DOI: 10.1029/2010JA015527.
    [10]
    REN Zhipeng, WAN Weixing, LIU Libo, et al. Longitudinal variations of electron temperature and total ion density in the sunset equatorial topside ionosphere[J]. Geophys. Res. Lett., 2008, 35, L05108. DOI: 10.1029/2007GL032998
    [11]
    SCHERLIESS L, THOMPSON D C, SCHUNK R W. Longitudinal variability of low-latitude total electron content:tidal influences[J]. J. Geophys. Res., 113, A01311.DOI: 10.1029/2007JA012480
    [12]
    ENGLAND S L, MAUS S, IMMEL T J, et al. Longitudinal variation of the E-region electric fields caused by atmospheric tides[J]. Geophys. Res. Lett., 2006, 33, L21105. DOI: 10.1029/2006GL027465
    [13]
    LÜHR H, ROTHER M, HÄUSLER K, et al. The influence of nonmigrating tides on the longitudinal variation of the equatorial electrojet[J]. J. Geophys. Res., 113, A08313. DOI: 10.1029/2008JA013064
    [14]
    REN Zhipeng, WAN Weixing, LIU Libo, et al. Intraannual variation of wave number 4 structure of vertical E×B drifts in the equatorial ionosphere seen from ROCSAT-1[J]. J. Geophys. Res., 114, A05308. DOI: 10.1029/2009JA014060
    [15]
    HARTMAN W, HEELIS R. Longitudinal variations in the equatorial vertical drift in the topside ionosphere[J]. J. Geophys. Res., 112, A03305. DOI: 10.1029/2006JA011773
    [16]
    KIL H, OH S J, KELLEY M C, et al. Longitudinal structure of the vertical E×B and ion density seen from ROCSAT-1[J]. Geophys. Res. Lett., 34, L14110. DOI:10. 1029/2007GL030018
    [17]
    KIL H, TALAAT E R, OH S J, et al. Wave structures of the plasma density and vertical E×B drift in lowlatitude F region[J]. J. Geophys. Res., 113, A09312. DOI: 10.1029/2008JA013106
    [18]
    FEJER B G, JENSEN J W, SU S Y. Quiet time equatorial F region vertical plasma drift model derived from ROCSAT-1 observations[J]. J. Geophys. Res., 113, A05304. DOI: 10.1029/2007JA012801
    [19]
    REN Zhipeng, WAN Weixing, XIONG Jiangang, et al. Simulated wave number 4 structure in equatorial F-region vertical plasma drifts[J]. J. Geophys. Res., 115, A05301. DOI: 10.1029/2009JA014746
    [20]
    LIU L, WAN W, YUE X, et al. Topside ionospheric scale heights retrieved from constellation observing system for meteorology, ionosphere, and climate radio occultation measurements[J]. J. Geophys. Res., 113, A10304. DOI: 10.1029/2008JA013490
    [21]
    WAN W, REN Z, DING F, et al. A simulation study for the couplings between DE3 tide and longitudinal WN4 structure in the thermosphere and ionosphere[J]. J. Atmos. Terr. Phys., 2012, 90:52-60
    [22]
    IMMEL T J, SAGAWA E, ENGLAND S L, et al. Control of equatorial ionospheric morphology by atmospheric tides[J]. Geophys. Res. Lett., 2006, 33, L15108. DOI:10. 1029/2006GL026161
    [23]
    ENGLAND S L, ZHANG XIAOLI, IMMEL T J, et al. The effect of non-migrating tides on the morphology of the equatorial ionospheric anomaly:seasonal variability[J]. Earth Planets Space, 2009, 61:493-503
    [24]
    ENGLAND, S L, IMMEL T J, HUBA J D, et al. Modeling of multiple effects of atmospheric tides on the ionosphere:an examination of possible coupling mechanisms responsible for the longitudinal structure of the equatorial ionosphere[J]. J. Geophys. Res., 2012, 115, A05308. DOI: 10.1029/2009JA014894
    [25]
    WU Q, SOLOMON S C, KUO Y H, et al. Spectral analysis of ionospheric electron density and mesospheric neutral wind diurnal nonmigrating tides observed by COSMIC and TIMED satellites[J]. Geophys. Res. Lett., 2009, 36, L14102. DOI: 10.1029/2009GL038933
    [26]
    FANG T W, KIL H, MILLWARD G, et al. Causal link of the wave-4 structures in plasma density and vertical plasma drift in the low-latitude ionosphere[J]. J. Geophys. Res., 2009, 114, A10315. DOI: 10.1029/2009JA014460
    [27]
    HE Maosheng, LIU Libo, WAN Weixing, et al. Strong evidence for couplings between the ionospheric wave-4 structure and atmospheric tides[J]. Geophys. Res. Lett., 2011, 38, L14101. DOI: 10.1029/2011GL047855
    [28]
    JIN H, MIYOSHI Y, FUJIWARA H, et al. Electrodynamics of the formation of ionospheric wavenumber4 longitudinal structure[J]. J. Geophys. Res., 2008, 113, A09307. DOI: 10.1029/2008JA013301
    [29]
    HAGAN M E, MAUTE A, ROBLE R G, et al. Connections between deep tropical clouds and the Earth's ionosphere[J]. Geophys. Res. Lett., 2007, 34, L20109. DOI:10. 1029/2007GL030142
    [30]
    BANKOV L, HEELIS R, PARROT M, et al. WN4 effect on longitudinal distribution of different ion species in the topside ionosphere at low latitudes by means of DEMETER, DMSP-F13 and DMSP-F15 data[J]. Ann. Geophys., 2009, 27:2893-2902
    [31]
    WEST K H, HEELIS R A. Longitude variations in ion composition in the morning and evening topside equatorial ionosphere near solar minimum[J]. J. Geophys. Res., 1996, 101(A4):7951-7960
    [32]
    RICHMOND A D. The Upper Mesosphere and Lower Thermosphere:A Review of Experiment and Theory[M]. Washington D C:American Geophysical Union, 1995
    [33]
    KIL H, PAXTON L J, LEE W K, et al. Is DE2 the source of the ionospheric wavenumber 3 longitudinal structure[J]. J. Geophys. Res., 2010, 115, A11319. DOI: 10.1029/2010JA015979
    [34]
    FEJER B G, PAULA DE E R, GONZALEZ S A, et al. Average vertical and zonal F region plasma drifts over JICAMARCA[J]. J. Geophys. Res., 1991, 96(A8):13901-13906
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(955) PDF Downloads(650) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return