Volume 36 Issue 3
May  2016
Turn off MathJax
Article Contents
MA Jian, XIAO Gang, XIAO Pengfei, CAI Yaning, RAN Zhiguo. Thermal Stability Optimization Design and Thermal Deformation Analysis of Space Antenna Structure Based on Representative Volume Element Method[J]. Chinese Journal of Space Science, 2016, 36(3): 386-394. doi: 10.11728/cjss2016.03.386
Citation: MA Jian, XIAO Gang, XIAO Pengfei, CAI Yaning, RAN Zhiguo. Thermal Stability Optimization Design and Thermal Deformation Analysis of Space Antenna Structure Based on Representative Volume Element Method[J]. Chinese Journal of Space Science, 2016, 36(3): 386-394. doi: 10.11728/cjss2016.03.386

Thermal Stability Optimization Design and Thermal Deformation Analysis of Space Antenna Structure Based on Representative Volume Element Method

doi: 10.11728/cjss2016.03.386
  • Received Date: 2015-04-08
  • Rev Recd Date: 2016-01-05
  • Publish Date: 2016-05-15
  • High temperature gradient and severe temperature variation in spacecraft will induce spacecraft thermal expansion and deformation.Thermally induced deflections of reflector have much effect on the electric performance of antenna on satellite that has a great limit in surface precision. Obviously,the research of in-orbit temperature and thermal distortion for antennas on satellites is very important.In this paper,the thermal stability of space antenna structure is designed and analyzed by RVE (Representative Volume Element) method.The Coefficient of Thermal Expansion (CTE) is predicted by RVE mode and experiment is also carried out.Comparison between the predicted results and experimental data verifies the rightness of this model.Optimization models for space antenna structure are created,and both the longitudinal and transverse CTE are considered. Analyzed results show that this optimized support structure and the whole antenna have an excellent thermal dimensional stability.

     

  • loading
  • [1]
    YUAN Jiajun. Design and Analysis of Satellite Structures[M]. Beijing:China Astronautic Press, 2004(袁家军. 卫星结构设计与分析[M]. 北京:中国宇航出版社, 2004)
    [2]
    LIU Zhenyu, FENG Jisheng, ZHANG Qingjun. Optimization design for coefficient of thermal expansion of a space deployable truss[J]. Spacecraft Eng., 2012, 21(3):35-40(刘振玉, 冯纪生, 张庆君. 一种空间可展开桁架结构杆件热膨胀系数的优化设计[J]. 航天器工程, 2012, 21(3):35-40)
    [3]
    LIU Guoqing, RUAN Jianhua, LUO Wenbo, et al. Research on thermal deformation analysis and test verification method for spacecraft high-stability structure[J]. Spacecraft Eng., 2014, 23(2):64-70(刘国青, 阮剑华, 罗文波, 等. 航天器高稳定结构热变形分析与试验验证方法研究[J]. 航天器工程, 2014, 23(2):64-70)
    [4]
    MA Huitao LI Jindong. Integrated thermal-structural analytical technology for space structure with large-scale and complicated construction[J]. J. Astron., 2008, 29(2):413-419(麻慧涛, 李劲东. 大型复杂空间结构机-热集成分析技术研究[J]. 宇航学报, 2008, 29(2):413-419)
    [5]
    ISLAM M D R, SJ"OLIND S G, PRAMILA A. Finite ele-ment analysis of linear thermal expansion coefficients of unidirectional cracked composites[J]. J. Compos. Mater., 2001, 35:1762-76
    [6]
    DAVIS H. Microstructure organization in para-aramid fibers[J]. Textile Res. J., 2000, 70(11):945-950
    [7]
    RUPNOWSKI P, GENTZA M, SUTTERB J K, et al. An evaluation on the elastic properties and thermal expansion coefficients of medium and high modulus graphite fi-bers[J]. Composites: A, 2005, 36(3):327-38
    [8]
    SHEN Y L. Thermal expansion of metal-ceramic composites:a three dimensional analysis[J]. Mater. Sci. Eng., 1998, 252:269-275
    [9]
    MOHAJERJASBI S. Prediction for coefficients of thermal expansion of 3-D braided composites[C]//37th Structure, Structural Dynamics and Materials Conference. Salt Lake City:AIAA, 1996:1812-1817
    [10]
    MITAL W K, MURTHY P L N. Characterizing the properties of a C/SiC composite using micromechanics ana-lysis[C]//19th AIAA Applied Aerodynamics Conference, 2001. DOI: 10.2514/6.2001-1363
    [11]
    FAROOQU J K, SHEIKH M A. Modeling the composite unit cell for predicting thermal transport[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials. Newport, Rhode Island:AIAA, 2006. DOI: 10.2514/6.2006-2197
    [12]
    LUA J, SANKAR J, PAI D. A four cell decomposition model for unbalanced woven fabric composites subjected to thermal-mechanical loading[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Structures, Structural Dynamics, and Materials and Co-located Confe-rences. Newport, Rhode Island:AIAA, 2006:1-22
    [13]
    WONGSTO A, LI S. Micromechanical finite element analysis of unidirectional fiber reinforced composites with fibres distributed at random over the transverse cross section[J]. Composites:A, 2005, 36(9):1246-1266
    [14]
    KRACH A, ADVANI S G. Influence of void shaper, void volume and matrix anisotropy on effective thermal conductivity of a three phase composite[J]. J. Compos. Mater., 1996, 30:933-946
    [15]
    MORENA L C, JAMES K V, BECK J. An introduction to the RADARSAT-2 mission[J]. Canada J. Remote Sens., 2004, 30(3):221-234
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1002) PDF Downloads(932) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return