Volume 37 Issue 1
Jan.  2017
Turn off MathJax
Article Contents
ZHANG Jingke, LI Huichao. Two Upstream Splitting Schemes for Generalized Lagrange Multiplier Magnetohydrodynamics[J]. Journal of Space Science, 2017, 37(1): 8-18. doi: 10.11728/cjss2017.01.008
Citation: ZHANG Jingke, LI Huichao. Two Upstream Splitting Schemes for Generalized Lagrange Multiplier Magnetohydrodynamics[J]. Journal of Space Science, 2017, 37(1): 8-18. doi: 10.11728/cjss2017.01.008

Two Upstream Splitting Schemes for Generalized Lagrange Multiplier Magnetohydrodynamics

doi: 10.11728/cjss2017.01.008
  • Received Date: 2015-05-18
  • Rev Recd Date: 2016-09-11
  • Publish Date: 2017-01-15
  • To develop a high performance MHD numerical simulation method is an important factor in research of numerical prediction of space weather. The upwind flux splitting scheme based on finite volume method has good ability to capture discontinuities. Steger-Warming and AUSM (Advection Upstream Splitting Method) schemes are two outstanding upwind flux splitting scheme, which are classified as FVS (Flux Vector Splitting) method. In this paper, these two schemes are applied to solve the Extended Generalized Lagrange Multiplier Magnetohydrodynamics (EGLM-MHD) equation with Galilean invariance. Results obtained from Orszag-Tang vortex and three-dimensional blastwave problem indicate that those two schemes are both robust and accurate. Particularly, AUSM scheme is superior to Steger-Warming scheme in divergence error control and computational speed.

     

  • loading
  • [1]
    ANNETTE P, DOUGLAS B, DUSAN O, et al. Wang-Sheeley-Arge-Enlil cone model transitions to opera-tions[J]. Space Weather, 2011, 9(3):420-424
    [2]
    RILEY P, LIONELLO R, LINKER J A, et al. Global MHD modeling of the solar corona and inner heliosphere for the whole heliosphere interval[J]. Solar Phys., 2011, 274 (1/2):361-377
    [3]
    YANG Liping, FENG Xueshang, XIANG Changqing, et al. Time-dependent MHD modeling of the global solar corona for year 2007:driven by daily-updated magnetic field synoptic data[J]. J. Geophys. Res., 2012, 117(A8):101-110
    [4]
    FENG X A, ZHOU Y F, WU S T. A novel numerical implementation for solar wind modeling by the modified conservation element/solution element method[J]. Astrophys. J., 2007, 655(2):1110-1126
    [5]
    FORBES T G, LINKER J A, CHEN J, et al. CME theory and models[J]. Space Sci. Rev., 2006, 123(1/2/3):251-302
    [6]
    LYON J G, FEDDER J A, MOBARRY C M. The Lyon-Fedder-Mobarry (LFM) global MHD magnetosphe-ric simu-lation code[J]. J. Atmos. Solar-Terr. Phys., 2004, 66(15/16):1333-1350
    [7]
    FENG Xueshang, XIANG Changqing, ZHONG Dingkun. Numerical study of interplanetary solar storms[J]. Sci. Sin. Terr., 2013, 43(6):912-933(冯学尚, 向长青, 钟鼎坤. 行星际太阳风暴的数值模拟研究[J]. 中国科学:地球科学, 2013, 43(6):912-933)
    [8]
    HAN S H, LEE J I, KIM K H. Accurate and robust pressure weight advection upstream splitting method for magnetohydrodynamics equations[J]. AIAA J., 2009, 47(4):970-981
    [9]
    BRIO M, WU C C. An upwind differencing scheme for the equations of ideal magnetohydrodynamics[J]. J. Comput. Phys., 1988, 75(2):400-422
    [10]
    JANHUNEN P. A positive conservative method for magnetohydrodynamics Based HLL and Roe methods[J]. J. Comput. Phys., 2000, 160(2):649-661
    [11]
    STEGER J L, WARMING R F. Flux vector splitting of the inviscid gas dynamic equation with application to finite-difference methods[J]. J. Comput. Phys., 1981, 40(2):263-293
    [12]
    LIN S J, CHAO W C, SUD Y C, et al. A class of the Van Leer-type transport schemes and its application to the moisture transport in a general circulation model[J]. Monthly Weather Rev., 1994, 122(7):1575-1593
    [13]
    LIOU M S, STEFFEN C J. A new flux splitting scheme[J]. J. Comput. Phys., 1993, 107(1):23-39
    [14]
    MACCORMACK R W. Numerical computation in magnetofluid dynamics[C]//Computational fluid dynamics for the 21st century. Berlin:Splinger, 2001:369-384
    [15]
    PAN Yong, WANG Jiangfeng, WU Yizhao. A new Jacobian matrix splitting method for MHD equations upwind scheme[J]. Acta Aerodyn. Sin., 2008, 26(2):249-256(潘勇, 王江峰, 伍贻兆. 一种新的用于MHD方程逆风格式的Jacobian矩阵分裂方法[J]. 空气动力学学报, 2008, 26(2):249-256)
    [16]
    TÓTH G. The ▽·B=0 constraint in shock-capturing ma-gnetohydrodynamics codes[J]. J. Comput. Phys., 2000, 161(2):605-652
    [17]
    BRACKBILL J U, BARNES D C. The effect of nonzero a·B on the numerical solution of the magnetohydrodynamic equations[J]. J. Comput. Phys., 1980, 35(3):426-430
    [18]
    EVANS C R, HAWLEY J F. Simulation of magnetohydrodynamic flows-A constrained transport method[J]. Astrophys. J., 1988, 332(2):659-677
    [19]
    POWELL K G, ROE P L, LINDE T J, et al. A solution-adaptive upwind scheme for ideal magnetohydrodyna-mics[J]. J. Comput. Phys., 1999, 154(2):284-309
    [20]
    DEDNER A, KEMM F, KRONER D, et al. Hyperbolic divergence cleaning for the MHD equations[J]. J. Comput. Phys., 2002, 175(2):645-673
    [21]
    MIGNONE A, TZEFERACOS P. A second-order unsplit Godunov scheme for cell-centered MHD:the CTU-GLM scheme[J]. J. Comput. Phys., 2010, 229(6):2117-2138
    [22]
    JIANG Chaowei, FENG Xueshang, ZHANG Jian. AMR Simulations of magnetohydrodynamic problems by the CESE method in curvilinear coordinates[J]. Solar Phys., 2010, 267(2):463-491
    [23]
    ZHANG Deliang. A Course in Computational Fluid Dynamics[M]. Beijing:Higher Education Press, 2011(张德良. 计算流体力学导论[M]. 北京:高等教育出版社, 2011)
    [24]
    DONTCHEV A L, HAGER W W, VELIOV V M. Second-order Runge-Kutta approximations in control constrained optical control[J]. SIAM J. Numer. Anal., 2000, 38(1):202-226
    [25]
    ZHANG M, YU S J, LIN S, et al. Solving the MHD equations by the space-time Conserving Element and Solution Element method[J]. J. Comput. Phys., 2006, 214(2):599-617
    [26]
    FENG Xueshang, ZHOU Yufen, HU Yanqi. A 3rd order WENO GLM-MHD scheme for magnetic reconnection[J]. Chin. J. Space Sci., 2006, 26(1):1-7
    [27]
    ZACHARY A L, MALAGOLI A, COLELLA P. A higher-order Godunov method for multidimensional ideal magnetohydrodynamics[J]. SIAM J. Sci. Comput., 1994, 15(2):263-284
    [28]
    TANG Huazhong, XU Kun. A high-order gas-kinetic method for multidimensional ideal magnetohydrodyna-mics[J]. J. Comput. Phys., 2000, 165(1):69-88
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1283) PDF Downloads(1610) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return