Volume 37 Issue 1
Jan.  2017
Turn off MathJax
Article Contents
GAO Haiyang, ZHANG Zuyi, BU Lingbing, HUO Chaoyang, WANG Zhen, ZHU Hong. Statistical Characteristics of Albedo Variation in Noctilucent Clouds Induced by Small-scale Gravity Waves[J]. Journal of Space Science, 2017, 37(1): 82-93. doi: 10.11728/cjss2017.01.082
Citation: GAO Haiyang, ZHANG Zuyi, BU Lingbing, HUO Chaoyang, WANG Zhen, ZHU Hong. Statistical Characteristics of Albedo Variation in Noctilucent Clouds Induced by Small-scale Gravity Waves[J]. Journal of Space Science, 2017, 37(1): 82-93. doi: 10.11728/cjss2017.01.082

Statistical Characteristics of Albedo Variation in Noctilucent Clouds Induced by Small-scale Gravity Waves

doi: 10.11728/cjss2017.01.082
  • Received Date: 2015-08-10
  • Rev Recd Date: 2016-03-01
  • Publish Date: 2017-01-15
  • The accurate assessment of albedo variations in Noctilucent Clouds (NLC) induced by Gravity Waves (GW) has shown an important significance in evaluating the trend of NLC brightness. This work focuses on the impact of small-scale GW with wavelength of 10~150km on the albedo of Polar Mesospheric Cloud (PMC). Using the Level2 albedo images obtained by the Cloud Imaging and Particle Size (CIPS) experiment onboard Aeronomy of Ice in the Mesosphere mission (AIM) from 2008 to 2009, 6664 small-scale GW are extracted. The wavelength of those GW is from 10 to 150 kilometers. By comparing and analyzing the albedo in GW areas and in mean NLC areas, the characteristics of the albedo variations in NLC induced by small-scale GW are studied. Results show that the albedo variations are primarily positive, and the maximum average value, 4.48×10-6sr-1, is found on the descending portion of South Hemisphere. The albedo and Ice and Water Contents (IWC) variations are positively correlated, and the correlation coefficients are greater than 0.85. The albedo variations largely rely on the location and time of the GW, and the mean albedo variations are almost positive. The albedo variations are larger in higher latitude during the core of the seasons, while they become smaller gradually in lower latitude during the beginning and ending period of the seasons, and even to be negative in some edges of the maps. The albedo average value increases linearly as the background atmosphere increases, and the albedo variations in percentage is from 14.6% to 28.8% induced by small-scale GW. When the albedo amplitude of GW increases, the albedo variations also show a linear increase with the changing rate from 0.909 to 1.194. The whole variation rate of south hemisphere is a little smaller than that of north hemisphere because of the difference of background atmospheric conditions.

     

  • loading
  • [1]
    GADSDEN M, SCHRODER W. Noctilucent Clouds[M]. Berlin:Springer-Verlag Press, 1989
    [2]
    THOMAS G E. Mesospheric clouds and the physics of the mesopause region[J]. Rev. Geophys., 1991, 29(4):553-575
    [3]
    GADSDEN M. The North-West Europe data on noctilucent clouds:a survey[J]. J. Atmos. Sol. Terr. Phys., 1998, 60 (12):1163-1174
    [4]
    THOMAS G E, OLIVERO J J, JENSEN E J, et al. Relation between increasing methane and the presence of ice clouds at the mesopause[J]. Nature, 1989, 338:490-492. DOI: 10.1038/338490a0
    [5]
    THOMAS G E. Are noctilucent clouds harbingers of glo-bal change in the middle atmosphere[J]. Adv. Space. Res., 2003, 32(9):1737-1746
    [6]
    DELAND M T, SHETTLE E P, THOMAS G E. A quarter-century of satellite polar mesospheric cloud observations[J]. J. Atmos. Sol. Terr. Phys., 2006, 68(1):9-29
    [7]
    LUBKEN F J, BERGER U. Latitudinal and inter hemispheric variation of stratospheric effects on mesospheric ice layer trends[J]. J. Geophys. Res., 2011, 116:D00P03. DOI: 10.1029/2010jd015258
    [8]
    TAYLOR M J, GADSDEN M, LOWE R P, et al. Mesospheric cloud observations at unusually low latitudes[J]. J. Atmos. Sol. Terr. Phys., 2002, 64(8/9/10/11):991-999
    [9]
    KIRKWOOD S, DALIN P, and RECHOU A. Noctilucent clouds observed from the UK and Denmark-trends and variations over 43 years[J]. Ann. Geophys., 2008, 26(5):1243-1254
    [10]
    DUBIETIS A, DALIN P, BALCIUNAS R, et al. Observations of noctilucent clouds from Lithuania[J]. J. Atmos. Sol. Terr. Phys., 2010, 72:1090-1099
    [11]
    PAUTET P D, STEGMAN J, WRASSE C M, et al. Analysis of gravity waves structures visible in noctilucent cloud images[J]. J. Atmos. Sol. Terr. Phys., 2011, 73(14/15):2082-2090
    [12]
    DUBIETIS A, DALIN P, BALCIUNAS R, et al. Noctilucent clouds:modern ground-based photographic observations by a digital camera network[J]. Appl. Opt., 2011, 50(28):72-79
    [13]
    JENSEN E J and THOMAS G E. Numerical simulations of the effects of gravity waves on noctilucent clouds[J]. J. Geophys. Res., 1994, 99:3421-3430
    [14]
    RAPP M, LUBKEN F J, MULLEMANN, et al. Small-scale temperature variations in the vicinity of PMC:experimental and model results[J]. J. Geophys. Res., 2002, 107 (D19):4392. DOI: 10.1029/2001JD001241
    [15]
    CHANDRAN A, RUSCH D W, THOMAS G E, et al. Atmospheric gravity wave effects on polar mesospheric clouds:a comparison of numerical simulations from CARMA 2D with AIM observations[J]. J. Geophys. Res., 2012, 117:D20104. DOI: 10.1029/2012JD017794
    [16]
    GERRARD A J, KANE T J, ECKERMANN S D, et al. Gravity waves and mesospheric clouds in the summer middle atmosphere:a comparison of lidar measurements and ray modeling of gravity waves over Sondrestrom, Greenland[J]. J. Geophys. Res., 2004, 109:D10103. DOI: 10.1029/2002JD002783
    [17]
    GERRARD A J, KANE T J, THAYER J P. Noctilucent clouds and wave dynamics:observations at Sondrestrom, Greenland[J]. Geophys. Res. Lett., 1998, 25(15):2817-2820
    [18]
    THAYER J P, RAPP M, GERRARD A J, et al. Gravi-ty wave influences on Arctic mesospheric clouds as determined by a Rayleigh lidar at Sondrestrom, Greenland[J]. J. Geophys. Res., 2003, 108(D8):8449. DOI: 10.1029/2002JD002363
    [19]
    CHU X, YAMASHITA C, ESPY P J, et al. Responses of polar mesospheric cloud brightness to stratospheric gra-vity waves at the South Pole and Rothera, Antarctica[J]. J. Atmos. Sol. Terr. Phys., 2009, 71:434-445
    [20]
    WILMS H, RAPP M, HOFFMANN P, et al. Gravity wave influence on PMC:experimental results from ALOMAR, 69°N[J]. Atmos. Chem. Phys., 2013, 13:11951-11963
    [21]
    SCHOCH A. Thermal Structure and Gravity Waves in the Arctic Middle Atmosphere above ALOMAR (69.3N, 16.0 E)[D]. Leibniz-Institut für Atmosphärenphysik: Universität Rostock, 2007
    [22]
    INNIS J L, KLEKOCIUK A R, MORRIS R J, et al. A study of the relationship between stratospheric gravi-ty waves and polar mesospheric clouds at Davis Antarctica[J]. J. Geophys. Res., 2008, 113:D14102. DOI: 10.1029/2007JD009031
    [23]
    CHANDRAN A, RUSCH D W, MERKEL A W. et al. Polar mesospheric cloud structures observed from the cloud imaging and particle size experiment on the Aeronomy of Ice in the Mesosphere spacecraft:atmospheric gra-vity waves as drivers for longitudinal variability in polar mesospheric cloud occurrence[J]. J. Geophys. Res., 2010, 115:D13102. DOI: 10.1029/2009jd013185
    [24]
    LIU X, YUE J, XU J Y, et al. Gravity wave variations in the polar stratosphere and mesosphere from SOFIE/AIM temperature observations[J]. J. Geophys. Res., 2014, 119:7368-7381
    [25]
    RUSSELL J M, BAILEY S M, GORDLEY L L, et al. The Aeronomy of Ice in the Mesosphere (AIM) mission:overview and early science results[J]. J. Atmos. Sol. Terr. Phys., 2009, 71 (3/4):289-299
    [26]
    RUSCH D W, THOMAS G E, MCCLINTOCK W, et al. The cloud imaging and particle size experiment on the aeronomy of ice in the mesosphere mission:cloud morphology for the northern 2007 season[J]. J. Atmos. Sol. Terr. Phys., 2009, 71 (3/4):356-364
    [27]
    LUMPE J D, BAILEY S M, CARSTENS J N, et al. Retrieval of polar mesospheric cloud properties from CIPS:algorithm description, error analysis and cloud detection sensitivity[J]. J. Atmos. Sol. Terr. Phys., 2013, 104(2):167-196
    [28]
    CARSTENS J N, BAILEY S M, LUMPE J D, et al. Understanding uncertainties in the retrieval of polar mesospheric clouds from the cloud imaging and particle size experiment in the presence of a bright Rayleigh background[J]. J. Atmos. Sol. Terr. Phys., 2013, 104(2):197-212
    [29]
    CHANDRAN A, RUSCH D W, PALO S E, et al. Gravity wave observations in the summertime polar mesosphere from the Cloud Imaging and Particle Size (CIPS) expe-riment on the AIM spacecraft[J]. J. Atmos. Sol. Terr. Phys., 2009, 71(3/4):392-400
    [30]
    TAYLOR M J, PAUTET P D, ZHAO Y, et al. High-latitude gravity wave measurements in noctilucent clouds and polar mesospheric clouds[M]//Mangalathayil Ali Abdu, Dora Pancheva (Eds.), Aeronomy of the Earth's Atmosphere and Ionosphere, IAGA Special Sopron Book Series, 2011, 2(Part1):13. DOI: 10.1007/978-94-007-0326-1_7
    [31]
    ZHAO Y, TAYLOR M J, RANDALL C E, et al. Investigating seasonal gravity wave activity in the summer polar mesosphere[J]. J. Atmos. Sol. Terr. Phys., 2015, 127:8-20
    [32]
    LI Q, XU J Y, YUE J, et al. Statistical characteristics of gravity wave activities observed by an OH airglow imager at Xinglong, in northern China[J]. Ann. Geophys., 2011, 29:1401-1410
    [33]
    SUZUKI S, TSUTSUMI M, PALO S E, et al. Short-period gravity waves and ripples in the South Pole mesosphere[J]. J. Geophys. Res., 2011, 116(D19):D19109. DOI: 10.1029/2011jd015882
    [34]
    JIANG G Y, XU J Y, YUAN W, et al. A comparison of mesospheric winds measured by FPI and meteor radar located at 40N[J]. Sci. China.:Tech. Sci., 2012, 55:1245-1250
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(710) PDF Downloads(1126) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return