Volume 37 Issue 2
Mar.  2017
Turn off MathJax
Article Contents
WANG Shuzhi, LIU Congliang, ZHU Guangwu, BAI Weihua, DU Qifei, SUN Yueqiang, XIA Junming, MENG Xiangguang, WANG Xianyi, ZHAO Danyang, WANG Dongwei, CAI Yuerong, WU Di. Simulation Study on GRO and LRO Events[J]. Journal of Space Science, 2017, 37(2): 207-213. doi: 10.11728/cjss2017.02.207
Citation: WANG Shuzhi, LIU Congliang, ZHU Guangwu, BAI Weihua, DU Qifei, SUN Yueqiang, XIA Junming, MENG Xiangguang, WANG Xianyi, ZHAO Danyang, WANG Dongwei, CAI Yuerong, WU Di. Simulation Study on GRO and LRO Events[J]. Journal of Space Science, 2017, 37(2): 207-213. doi: 10.11728/cjss2017.02.207

Simulation Study on GRO and LRO Events

doi: 10.11728/cjss2017.02.207
  • Received Date: 2016-03-24
  • Rev Recd Date: 2016-04-07
  • Publish Date: 2017-03-15
  • Combining the GRO (Global Navigation Satellite System Radio Occultation) and LRO (Low Earth Orbit Radio Occultation) techniques to probe the Earth's atmosphere is a main development direction of RO (Radio Occultation). In this study, the mathematical criteria of a RO event have been described. Then the effects of the main orbit parameters of LEO satellite on the RO events amount and their global distribution have been discussed by a simulation study. The results showed that:the lower the LEO satellite orbit is, the more GRO events are; when the inclination is between 30° and 75°, there are more GRO events and their Earth coverage is higher. The LRO events distribute on the Earth evenly when the LEO-LEO RO satellite set in the polar orbits. This study can provide a scientific reference for GRO and LRO satellite constellation design.

     

  • loading
  • [1]
    KLIORE A, CAIN D L, GERALD S, et al. Occultation experiment:results of the first direct measurement of Mars's atmosphere and ionosphere[J]. Science, 1965, 149:1243-1248
    [2]
    ELLIOT J L, OLKIN C B. Probing planetary atmospheres with stellar occultations[J]. Science, 1996,24:89-123
    [3]
    KLIORE A, DAN LC, FJELDBO G, et al. Preliminary results on the atmospheres of Io and Jupiter from the pioneer 10s-band occultation experiment[J]. Science, 1974, 183:323-324
    [4]
    CHEN S Y, HUANG C Y, KUO Y H, et al. Assimilation of GPS refractivity from FORMOSAT-3/COSMIC using a nonlocal operator with WRF 3DVAR and its impact on the prediction of a typhoon event[J]. Terr. Atmos. Ocean. Sci., 2009, 20(1):133-154
    [5]
    WANG Shuzhi, ZHU Guangwu, BAI Weihua, et al. For the first time Fengyun-3C satellite-global navigation satellite system occultation sounder achieved spaceborne Beidou system radio occultation[J]. Physics, 2015, 64(8):089301(王树志, 朱光武, 白伟华, 等. 风云三号C星全球导航卫星掩星探测仪首次实现北斗掩星探测. 物理学报, 2015,64(8):089301)
    [6]
    WANG Dazhao, BAI Weihua, SUN Yueqiang, et al. Inversion algorithms and precision analysis of ROPP[J]. Chin. J. Space Sci., 2015, 35(3):350-355(王大钊, 白伟华, 孙越强, 等. ROPP反演软件算法及其精度分析[J]. 空间科学学报, 2015, 35(3):350-355)
    [7]
    SCHWEITZER S, KIRCHENGAST G, SCHWAERZ M, et al. Thermodynamic state retrieval from microwave occultation data and performance analysis based on end-to-end simulations[J]. J. Geophys. Res., 2011, 116(D10):1-7
    [8]
    HARRISON J J, BERNATH P F, KIRCHENGAST G. Spectroscopic requirements for ACCURATE, a microwave and infrared-laser occultation satellite mission[J]. J. Quant. Spectros. Radiat. Trans., 2011, 112(14):2347-2354
    [9]
    LÜ Huaping, YAN Wei, WANG Yingqiang, et al. Investigation of LEO-LEO occultation simulation[J]. Remote Sens. Inf., 2015(2):65-70(吕华平, 严卫, 王迎强,等. LEO-LEO掩星事件仿真研究[J]. 遥感信息, 2015(2):65-70)
    [10]
    DU Xiaoyong, FU Yang, XUE Zhengang, et al. Simu-lation of the impacts of satellite orbit parameters on the number and distribution of LEO-LEO occultation events[J]. Chin. J. Geophys., 2007, 50(5):1289-1297(杜晓勇, 符养, 薛震刚, 等. 卫星轨道参数对LEO-LEO掩星事件数量及分布影响的模拟研究[J]. 地球物理学报, 2007, 50(5):1289-1297)
    [11]
    XU Xiaohua, LI Zhenghang, LUO Jia. Simulation of the impacts of single LEO satellite orbit parameters on the distribution and number of occultation events[J]. Geomat. Inf. Sci. Wuhan Univ., 2005, 30(7):609-612(徐晓华, 李征航, 罗佳. 单颗LEO卫星轨道参数对GPS掩星事件分布和数量影响的模拟研究[J]. 武汉大学学报:信息科学版, 2005, 30(7):609-612)
    [12]
    ZHAO Shijun, SUN Xuejin, ZHU Youcheng, et al. Effect of LEO satellite's orbit parameter on GPS occultation event's number and distribution[J]. J. PLA Univ. Sci. Tech.:Nat. Sci., 2002, 3(2):85-89(赵世军, 孙学金, 朱有成, 等. LEO卫星轨道参数对GPS掩星数量和分布的影响[J]. 解放军理工大学学报:自然科学版, 2002, 3(2):85-89)
    [13]
    WANG Xianyi, SUN Yueqiang, BAI Weihua, et al. Simulation of number and distribution of Compass occultation events[J]. Chin. J. Geophys., 2013, 56(8):2522-2530(王先毅, 孙越强, 白伟华, 等. 北斗掩星事件数量与分布的模拟研究[J]. 地球物理学报, 2013, 56(8):2522-2530)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1266) PDF Downloads(1333) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return