Volume 37 Issue 4
Jul.  2017
Turn off MathJax
Article Contents
LOU Fei, YE Yudong. Statistical Comparison of Magnetic Clouds with Non-magnetic Clouds in Interplanetary Coronal Mass Ejections for Solar Cycle 24[J]. Journal of Space Science, 2017, 37(4): 381-394. doi: 10.11728/cjss2017.04.381
Citation: LOU Fei, YE Yudong. Statistical Comparison of Magnetic Clouds with Non-magnetic Clouds in Interplanetary Coronal Mass Ejections for Solar Cycle 24[J]. Journal of Space Science, 2017, 37(4): 381-394. doi: 10.11728/cjss2017.04.381

Statistical Comparison of Magnetic Clouds with Non-magnetic Clouds in Interplanetary Coronal Mass Ejections for Solar Cycle 24

doi: 10.11728/cjss2017.04.381
  • Received Date: 2016-06-08
  • Rev Recd Date: 2016-11-12
  • Publish Date: 2017-07-15
  • Interplanetary Coronal Massive Ejections (ICME) are major drivers of geo-magnetic storms and have great influence on the space weather environment. ICMEs can be divided into two parts:Magnetic Clouds (MC) and non-Magnetic Clouds (non-MC). MCs have large and smooth rotation in the magnetic fields' angle compared to non-MC, and they can interact with the Earth's magnetosphere more easily and cause severe space weather events. To make an insight into the on-going Solar Cycle (Solar Cycle 24) and its MCs and non-MCs' characteristic and space weather effect, a statistical research is made on 168 ICMEs during 2008-2015 using the data from observation at 1AU. There are 68 MCs and the MC rate of ICME is 40.48%. The MCs and non-MCs' plasma parameters and their effect on the space weather, relationship with the solar activities, comparison with each other, and different appearance in Solar Cycle 23, 24 were analyzed. In Solar Cycle 24, the geo-magnetic storms caused by MCs are usually stronger than those caused by non-MC. The south component of magnetic field is of great importance to cause the storms. MC occurrence has a good correlation with the Sunspot Number (SSN), while non-MC and ICME' correlation coefficient with SSN is smaller, and the number of MC shows different distributions during different solar cycle phases. MCs' magnetic field and south component of magnetic field are stronger than those of non-MC on total, but the difference between their temperature and proton density is very small. The geo-magnetic effect of MCs in Solar Cycle 24 are weaker than those in Solar Cycle 23. This is because of that the maximum south component of magnetic field, the propagation speed and the proton temperature of magnetic clouds in Solar Cycle 24 are smaller.

     

  • loading
  • [1]
    HOWARD R A, SHEELEY N R Jr, KOOMEN M J, et al. Coronal mass ejections:1979-1981[J]. J. Geophys. Res. Space Phys., 1985, 90(A9):8173-8191
    [2]
    CYR O C S, HOWARD R A, SHEELEY N R Jr, et al. Properties of coronal mass ejections:SOHO LASCO observations from January 1996 to June 1998[J]. J. Geophys. Res. Space Phys., 2000, 105(A8):18169-18185
    [3]
    GOPALSWAMY N. Coronal mass ejections of solar cycle 23[J]. J. Astrophys. Astron., 2006, 27(2):243-254
    [4]
    TSURUTANI B T, ECHER E, GUARNIERI F L, et al. CAWSES November 7-8, 2004, superstorm:complex solar and interplanetary features in the post-solar maximum phase[J]. Geophys. Res. Lett., 2008, 35(6):L06S05
    [5]
    GONZALEZ W D, TSURUTANI B T, DE GONZALEZ A L C. Interplanetary origin of geomagnetic storms[J]. Space Sci. Rev., 1999, 88(3/4):529-562
    [6]
    HUTTUNEN K E J, SCHWENN R, BOTHMER V, et al. Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of solar cycle 23[J]. Ann. Geophys., 2005, 23(2):625-641
    [7]
    RICHARDSON I G, CANE H V. Signatures of shock drivers in the solar wind and their dependence on the solar source location[J]. J. Geophys. Res. Space Phys., 1993, 98(A9):15295-15304
    [8]
    GOLDSTEIN R, NEUGEBAUER M, CLAY D. A statistical study of coronal mass ejection plasma flows[J]. J. Geophys. Res. Space Phys., 1998, 103(A3):4761-4766
    [9]
    WEI Fengsi, LIU Rui, FAN Quanlin, et al. Identification of the magnetic cloud boundary layers[J]. J. Geophys. Res. Space Phys., 2003, 108(A6):1263
    [10]
    RICHARDSON I G, CANE H V. Near-earth interplanetary coronal mass ejections during solar cycle 23(1996-2009):catalog and summary of properties[J]. Solar Phys., 2010, 264(1):189-237
    [11]
    BURLAGA L, SITTLER E, MARIANI F, et al. Magnetic loop behind an interplanetary shock:voyager, Helios, and IMP 8 observations[J]. J. Geophys. Res. Space Phys., 1981, 86(A8):6673-6684
    [12]
    BORRINI G, GOSLING J T, BAMES J, et al. Helium abundance enhancements in the solar wind[J]. J. Geophys. Res. Space Phys., 1982, 87(A9):7370-7378
    [13]
    KLEIN L W, BURLAGA L F. Interplanetary magnetic clouds at 1AU[J]. J. Geophys. Res. Space Phys., 1982, 87(A2):613-624
    [14]
    GALVIN A B, IPAVICH F M, GLOECKLER G, et al. Solar wind iron charge states preceding a driver plasma[J]. J. Geophys. Res. Space Phys., 1987, 92(A11):12069-12081
    [15]
    RUSSELL C T, SHINDE A A. ICME identification from solar wind ion measurements[J]. Solar Phys., 2003, 216(1):285-294
    [16]
    WIMMER-SCHWEINGRUBER R F, CROOKER N U, BALOGH A, et al. Understanding interplanetary coronal mass ejection signatures[J]. Space Sci. Rev., 2006, 123(1):177-216
    [17]
    ZURBUCHEN T H, RICHARDSON I G. In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections[J]. Space Sci. Rev., 2006, 123(1/2/3):31-43
    [18]
    WU C C, LEPPING R P. Comparison of the characte-ristics of magnetic clouds and magnetic cloud-like structures for the events of 1995-2003[J]. Solar Phys., 2007, 242(1/2):159-165
    [19]
    WU C C, LEPPING R P. Statistical comparison of magnetic clouds with interplanetary coronal mass ejections for solar cycle 23[J]. Solar Phys., 2011, 269(1):141-153
    [20]
    BURLAGA L F, SKOUG R M, SMITH C W, et al. Fast ejecta during the ascending phase of solar cycle 23:ACE observations, 1998-1999[J]. J. Geophys. Res. Space Phys., 2001, 106(A10):20957-20977
    [21]
    WILSON R M, HATHAWAY D H, REICHMANN E J. On the behavior of the sunspot cycle near minimum[J]. J. Geophys. Res. Space Phys., 1996, 101(A9):19967-19972
    [22]
    LI Kejun, FENG Wen, LIANG Hongfei. The abnormal 24th solar cycle the first complete solar cycle of the new millennium[J]. Sci. Sin. Phys. Mech. Astron., 2010, 40(10):1293-1301. (李可军, 冯雯, 梁红飞. 异常的第24太阳活动周——新千年的第一个完整的太阳活动周[J]. 中国科学:物理学力学天文学, 2010, 40(10):1293-1301)
    [23]
    OWENS M J, LOCKWOOD M, BARNARD L, et al. Solar cycle 24:implications for energetic particles and long-term space climate change[J]. Geophys. Res. Lett., 2011, 38(19):L19106
    [24]
    SVALGAARD L, CLIVER E W, KAMIDE Y. Sunspot cycle 24:smallest cycle in 100 years[J]. Geophys. Res. Lett., 2005, 32(1):L01104
    [25]
    CLILVERD M A, CLARKE E, ULICH T, et al. Predicting solar cycle 24 and beyond[J]. Space Weather, 2006, 4(9):S09005
    [26]
    RUSSELL C T, LUHMANN J G, JIAN L K. How unprecedented a solar minimum[J]. Rev. Geophys., 2010, 48(2):RG2004
    [27]
    SOLANKI S K, KRIVOVA N A. Analyzing solar cycles[J]. Science, 2011, 334(6058):916-917
    [28]
    LIU Y, RICHARDSON J D, BELCHER J W. A statistical study of the properties of interplanetary coronal mass ejections from 0.3 to 5.4 AU[J]. Planet. Space Sci., 2005, 53(1-3):3-17
    [29]
    CANE H V, RICHARDSON I G. Interplanetary coronal mass ejections in the near-Earth solar wind during 1996-2002[J]. J. Geophys. Res. Space Phys., 2003, 108(A4):1156
    [30]
    RICHARDSON I G, CANE H V. Signatures of shock drivers in the solar wind and their dependence on the solar source location[J]. J. Geophys. Res. Space Phys., 1993, 98(A9):15295-15304
    [31]
    RICHARDSON I G, CANE H V. Regions of abnormally low proton temperature in the solar wind (1965-1991) and their association with ejecta[J]. J. Geophys. Res. Space Phys., 1995, 100(A12):23397-23412
    [32]
    RICHARDSON I G, CANE H V. Identification of interplanetary coronal mass ejections at 1AU using multiple solar wind plasma composition anomalies[J]. J. Geophys. Res. Space Phys., 2004, 109(A9):A09104
    [33]
    ZHANG J, RICHARDSON I G, WEBB D F, et al. Solar and interplanetary sources of major geomagnetic storms (Dst ≤ -100nT) during 19962005[J]. J. Geophys. Res. Space Phys., 2007, 112(A10):A10102
    [34]
    GONZALEZ W D, JOSELYN J A, KAMIDE Y, et al. What is a geomagnetic storm[J]. J. Geophys. Res. Space Phys., 1994, 99(A4):5771-5792
    [35]
    WEBB D F, HOWARD R A. The solar cycle variation of coronal mass ejections and the solar wind mass flux[J]. J. Geophys. Res. Space Phys., 1994, 99(A3):4201-4220
    [36]
    WU C C, LEPPING R P, GOPALSWAMY N. Relationships among magnetic clouds, CMEs, and geomagnetic storms[J]. Solar Phys., 2006, 239(1/2):449-460
    [37]
    LEPPING R P, WU C C. Selection effects in identifying magnetic clouds and the importance of the closest approach parameter[J]. Ann. Geophys., 2010, 28(8):1539-1552
    [38]
    MACQUEEN R M, HUNDHAUSEN A J, CONOVER C W. The propagation of coronal mass ejection transients[J]. J. Geophys. Res. Space Phys., 1986, 91(A1):31-38
    [39]
    SHEN C L, WANG Y M, GUI B, et al. Kinematic evolution of a slow CME in corona viewed by STEREO-B on 8 October 2007[J]. Solar Phys., 2011, 269(2):389-400
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(861) PDF Downloads(883) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return